Endothall and Florpyrauxifen-benzyl Behavior in Hydrilla (Hydrilla verticillata) When Applied in Combination

IF 2.1 2区 农林科学 Q2 AGRONOMY Weed Science Pub Date : 2022-08-01 DOI:10.1017/wsc.2022.39
M. Ortiz, S. Nissen, F. Dayan
{"title":"Endothall and Florpyrauxifen-benzyl Behavior in Hydrilla (Hydrilla verticillata) When Applied in Combination","authors":"M. Ortiz, S. Nissen, F. Dayan","doi":"10.1017/wsc.2022.39","DOIUrl":null,"url":null,"abstract":"Abstract Hydrilla [Hydrilla verticillata (L. f.) Royle] is often called the “perfect aquatic weed,” as it has numerous physiological adaptations that make it highly aggressive and competitive. Hydrilla verticillata has historically been managed effectively using fluridone; however, the overreliance on this single mechanism of action (MOA) resulted in evolved fluridone resistance in the late 1990s. Where fluridone-resistant H. verticillata populations evolved, endothall became widely used for H. verticillata control. In 2018, florpyrauxifen-benzyl, a highly active auxin-mimic herbicide, was registered for H. verticillata control, and its use has increased since its introduction. Endothall and florpyrauxifen-benzyl provide two effective MOAs for H. verticillata management, and combining these two MOAs would be an effective strategy to delay further resistance evolution. The objective of this research was to determine whether combining endothall and florpyrauxifen-benzyl would significantly impact the behavior of either herbicide in dioecious (DHV) or monoecious (MHV) H. verticillata compared with their behavior when applied alone. Endothall and florpyrauxifen-benzyl absorption and accumulation alone and in combination were measured over a 192-h time course. Translocation patterns were also determined. Herbicide accumulation in MHV and DHV was not impacted when these herbicides were applied in combination. Endothall translocation from shoots to roots in DHV was not impacted (alone = 18.7 ± 1.4%; combination = 23.2 ± 2.2%); however, endothall shoot-to-root translocation in MHV was reduced from 16.2 ± 1.3% applied alone to 2.2 ± 0.1% when applied in combination with florpyrauxifen-benzyl. Florpyrauxifen-benzyl shoot-to-root translocation was reduced in both MHV and DHV when applied in combination with endothall. Florpyrauxifen-benzyl translocation was reduced by 16- and 6-fold in DHV and MHV, respectively. These data do not suggest that there would be operational impacts from endothall and florpyrauxifen-benzyl mixtures. Still, there appear to be changes in herbicide behavior, primarily shoot-to-root translocation, when these two herbicides are applied in combination.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"70 1","pages":"537 - 542"},"PeriodicalIF":2.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2022.39","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Hydrilla [Hydrilla verticillata (L. f.) Royle] is often called the “perfect aquatic weed,” as it has numerous physiological adaptations that make it highly aggressive and competitive. Hydrilla verticillata has historically been managed effectively using fluridone; however, the overreliance on this single mechanism of action (MOA) resulted in evolved fluridone resistance in the late 1990s. Where fluridone-resistant H. verticillata populations evolved, endothall became widely used for H. verticillata control. In 2018, florpyrauxifen-benzyl, a highly active auxin-mimic herbicide, was registered for H. verticillata control, and its use has increased since its introduction. Endothall and florpyrauxifen-benzyl provide two effective MOAs for H. verticillata management, and combining these two MOAs would be an effective strategy to delay further resistance evolution. The objective of this research was to determine whether combining endothall and florpyrauxifen-benzyl would significantly impact the behavior of either herbicide in dioecious (DHV) or monoecious (MHV) H. verticillata compared with their behavior when applied alone. Endothall and florpyrauxifen-benzyl absorption and accumulation alone and in combination were measured over a 192-h time course. Translocation patterns were also determined. Herbicide accumulation in MHV and DHV was not impacted when these herbicides were applied in combination. Endothall translocation from shoots to roots in DHV was not impacted (alone = 18.7 ± 1.4%; combination = 23.2 ± 2.2%); however, endothall shoot-to-root translocation in MHV was reduced from 16.2 ± 1.3% applied alone to 2.2 ± 0.1% when applied in combination with florpyrauxifen-benzyl. Florpyrauxifen-benzyl shoot-to-root translocation was reduced in both MHV and DHV when applied in combination with endothall. Florpyrauxifen-benzyl translocation was reduced by 16- and 6-fold in DHV and MHV, respectively. These data do not suggest that there would be operational impacts from endothall and florpyrauxifen-benzyl mixtures. Still, there appear to be changes in herbicide behavior, primarily shoot-to-root translocation, when these two herbicides are applied in combination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内毒素与氟吡虫胺联用对水螅(水螅)的影响
水螅[Hydrilla verticillata (L. f.)]Royle]通常被称为“完美的水草”,因为它具有许多生理适应性,使其具有很强的攻击性和竞争力。历史上使用氟立酮有效地管理了水螅;然而,在20世纪90年代后期,对这种单一作用机制(MOA)的过度依赖导致了氟啶酮耐药性的发展。随着对氟啶酮的抗性种群的进化,内生菌被广泛用于控制黄斑螺旋菌。2018年,一种高活性的生长素模拟除草剂氟吡草胺苄(florpyrauxifen-benzyl)被注册用于控制猪瘟,自引入以来,其使用量有所增加。Endothall和florpyrauxifen-benzyl是两种有效的MOAs,这两种MOAs的联合使用将是延缓其抗性进一步进化的有效策略。本研究的目的是确定endothall和florpyrauxifen-benzyl联合使用除草剂对雌雄异株(DHV)或雌雄同株(MHV)的鸡毛蚜的行为是否比单独使用时显著影响。在192 h的时间内,分别测定了内室和氟吡虫胺-苯的吸收和积累。易位模式也被确定。混施对MHV和DHV体内的除草剂积累没有影响。DHV的茎向根的腔内转运不受影响(单独= 18.7±1.4%;组合= 23.2±2.2%);然而,与氟吡虫胺联用时,MHV的茎到根内转运从单独施用的16.2±1.3%降低到2.2±0.1%。氟吡虫胺联用可减少MHV和DHV的茎向根转运。在DHV和MHV中,Florpyrauxifen-benzyl易位分别减少了16倍和6倍。这些数据并不表明吸气管剂和氟吡虫胺-苯混合剂会对操作产生影响。然而,当这两种除草剂联合施用时,除草剂的行为似乎会发生变化,主要是梢到根的转运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Weed Science
Weed Science 农林科学-农艺学
CiteScore
4.60
自引率
12.00%
发文量
64
审稿时长
12-24 weeks
期刊介绍: Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include: - the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds - herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation - ecology of cropping and other agricultural systems as they relate to weed management - biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops - effect of weed management on soil, air and water.
期刊最新文献
Adaptations in wild radish (Raphanus raphanistrum) flowering time, Part 1: Individual-based modeling of a polygenic trait Smooth pigweed (Amaranthus hybridus) and unresolved Amaranthus spp. from Brazil resistant to glyphosate exhibit the EPSPS TAP-IVS substitution A Systematic Review of Chemical Weed Management in Peanut (Arachis hypogea) in the United States: Challenges and Opportunities Breeding allelopathy in cereal rye for weed suppression A hydrothermal model to predict Russian thistle (Salsola tragus) seedling emergence in the dryland of the Pacific Northwest (USA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1