{"title":"Effect of Pumice Powder on Mechanical, Thermal, and Water Absorption Properties of Fiberboard Composites","authors":"M. Koyuncu, Göksel Ulay, U. Şeker","doi":"10.2478/ftee-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract Composites were produced using medium-density fiberboard (MDF) flour with pumice powder which was mixed at various ratios by the hand lay-up technique. Mechanical properties, such as tensile and three-point bending strengths, were determined by ASTM D3039 and ASTM D790 respectively. The best three-point bending and tensile strength properties were maximum values obtained from composites containing 20wt% pumice powder (pp) and 50wt% pumice powder (pp) respectively. It is observed that the water absorption rate into the composites decreases with an increase in the pumice powder-to-ratio. The composite filled with 50wt%pumice powder absorbed the least amount of water compared to the other composites. All composites were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry analysis (DSC). SEM images revealed a near-homogeneous surface partly free of defects and holes. However, lateral profile images showed the presence of MDF flour particles agglomerated and a considerable number of bubbles and cavities that could interfere with the mechanical properties of the composites. The results of the mechanical, and thermal properties suggested that pumice powder epoxy composites with MDF flour can increase their tensile, three-point-bending strength, and glass transition temperature for the pure MDF flour composite.","PeriodicalId":12309,"journal":{"name":"Fibres & Textiles in Eastern Europe","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres & Textiles in Eastern Europe","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/ftee-2023-0025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Composites were produced using medium-density fiberboard (MDF) flour with pumice powder which was mixed at various ratios by the hand lay-up technique. Mechanical properties, such as tensile and three-point bending strengths, were determined by ASTM D3039 and ASTM D790 respectively. The best three-point bending and tensile strength properties were maximum values obtained from composites containing 20wt% pumice powder (pp) and 50wt% pumice powder (pp) respectively. It is observed that the water absorption rate into the composites decreases with an increase in the pumice powder-to-ratio. The composite filled with 50wt%pumice powder absorbed the least amount of water compared to the other composites. All composites were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry analysis (DSC). SEM images revealed a near-homogeneous surface partly free of defects and holes. However, lateral profile images showed the presence of MDF flour particles agglomerated and a considerable number of bubbles and cavities that could interfere with the mechanical properties of the composites. The results of the mechanical, and thermal properties suggested that pumice powder epoxy composites with MDF flour can increase their tensile, three-point-bending strength, and glass transition temperature for the pure MDF flour composite.
期刊介绍:
FIBRES & TEXTILES in Eastern Europe is a peer reviewed bimonthly scientific journal devoted to current problems of fibre, textile and fibrous products’ science as well as general economic problems of textile industry worldwide. The content of the journal is available online as free open access.
FIBRES & TEXTILES in Eastern Europe constitutes a forum for the exchange of information and the establishment of mutual contact for cooperation between scientific centres, as well as between science and industry.