Construction and application of a multilevel geohazard domain ontology: A case study of landslide geohazards

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-09-02 DOI:10.1016/j.acags.2023.100134
Min Wen , Qinjun Qiu , Shiyu Zheng , Kai Ma , Shuai Zheng , Zhong Xie , Liufeng Tao
{"title":"Construction and application of a multilevel geohazard domain ontology: A case study of landslide geohazards","authors":"Min Wen ,&nbsp;Qinjun Qiu ,&nbsp;Shiyu Zheng ,&nbsp;Kai Ma ,&nbsp;Shuai Zheng ,&nbsp;Zhong Xie ,&nbsp;Liufeng Tao","doi":"10.1016/j.acags.2023.100134","DOIUrl":null,"url":null,"abstract":"<div><p>The occurrence of geohazards entails sudden, unpredictable, and cascading effects, with numerous conceptual frameworks and intricate spatiotemporal relationships existing between hazard events. Presently, the absence of a unified mechanism for describing and expressing geohazard knowledge poses substantial challenges in terms of sharing and reusing domain-specific knowledge pertaining to geohazards. Therefore, it is imperative to address the issue of constructing a cohesive descriptive model that facilitates the sharing and reuse of geohazard knowledge. In this study, we propose a multilayered ontology construction method tailored specifically for the domain of landslide geological hazards. By comparing existing methods, we establish a hierarchical structure and expression framework for the geological hazard ontology. Notably, our approach seamlessly integrates the conceptual and semantic layers in the relationship description at each level, enabling association representation of hazard data across multiple tiers. We define essential concepts and attributes related to landslide geological hazards, along with their respective interrelationships. To achieve effective knowledge sharing and reuse, we model the ontology of the landslide geological disaster domain using the Web Ontology Language (OWL). This modeling approach serves as a powerful tool that facilitates the sharing and reuse of disaster-related knowledge. Finally, we verify the method's validity and reliability by employing illustrative case studies. The results demonstrate that the proposed approach imposes an affordable workload on human resources. Additionally, the foundational domain ontology significantly enhances information retrieval performance, thereby yielding satisfactory outcomes.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"20 ","pages":"Article 100134"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019742300023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of geohazards entails sudden, unpredictable, and cascading effects, with numerous conceptual frameworks and intricate spatiotemporal relationships existing between hazard events. Presently, the absence of a unified mechanism for describing and expressing geohazard knowledge poses substantial challenges in terms of sharing and reusing domain-specific knowledge pertaining to geohazards. Therefore, it is imperative to address the issue of constructing a cohesive descriptive model that facilitates the sharing and reuse of geohazard knowledge. In this study, we propose a multilayered ontology construction method tailored specifically for the domain of landslide geological hazards. By comparing existing methods, we establish a hierarchical structure and expression framework for the geological hazard ontology. Notably, our approach seamlessly integrates the conceptual and semantic layers in the relationship description at each level, enabling association representation of hazard data across multiple tiers. We define essential concepts and attributes related to landslide geological hazards, along with their respective interrelationships. To achieve effective knowledge sharing and reuse, we model the ontology of the landslide geological disaster domain using the Web Ontology Language (OWL). This modeling approach serves as a powerful tool that facilitates the sharing and reuse of disaster-related knowledge. Finally, we verify the method's validity and reliability by employing illustrative case studies. The results demonstrate that the proposed approach imposes an affordable workload on human resources. Additionally, the foundational domain ontology significantly enhances information retrieval performance, thereby yielding satisfactory outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层次地质灾害领域本体的构建与应用——以滑坡地质灾害为例
地质灾害的发生具有突发性、不可预测和级联效应,灾害事件之间存在许多概念框架和复杂的时空关系。目前,缺乏一个统一的机制来描述和表达地质灾害知识,在共享和重用与地质灾害有关的特定领域知识方面构成了重大挑战。因此,迫切需要解决构建一个具有凝聚力的描述模型的问题,以促进地质灾害知识的共享和重用。在本研究中,我们提出了一种针对滑坡地质灾害领域的多层本体构建方法。在比较现有方法的基础上,建立了地质灾害本体的层次结构和表达框架。值得注意的是,我们的方法在每个级别的关系描述中无缝地集成了概念层和语义层,从而实现了跨多层危险数据的关联表示。我们定义了与滑坡地质灾害相关的基本概念和属性,以及它们各自的相互关系。为了实现滑坡地质灾害领域知识的有效共享和重用,采用Web本体语言(OWL)对滑坡地质灾害领域本体进行建模。这种建模方法是一种强大的工具,可以促进灾害相关知识的共享和重用。最后,通过实例分析验证了该方法的有效性和可靠性。结果表明,该方法使人力资源负担得起。此外,基础领域本体显著提高了信息检索性能,从而产生了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1