R. Suleymanov, I. Yaparov, I. Saifullin, I. Vildanov, P. Shirokikh, A. Suleymanov, M. Komissarov, P. Liebelt, A. Nigmatullin, R. Khamidullin
{"title":"The current state of abandoned lands in the northern forest-steppe zone at the Republic of Bashkortostan (Southern Ural, Russia)","authors":"R. Suleymanov, I. Yaparov, I. Saifullin, I. Vildanov, P. Shirokikh, A. Suleymanov, M. Komissarov, P. Liebelt, A. Nigmatullin, R. Khamidullin","doi":"10.3232/SJSS.2020.V10.N1.03","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the state of postagrogenic ecosystems (18-20 years after the land was taken out of crop rotation) in the northern forest-steppe zone, Republic of Bashkortostan (South Ural) where soil cover is represented by postagrogenic gray-humus soils (Regosols). Probably, the unfavorable physical and agrochemical soil properties were a limiting factor in obtaining a profitable crop yield, and it was a reason for the withdrawal of land from agricultural use. Eighteen to twenty years since agricultural fields were taken out of crop rotation, a diverse vegetation cover has formed on postagrogenic soils. Analysis of the NDVI (Normalized Difference Vegetation Index) showed that more than 50% of the territory is covered by average and high vegetation development (low-grass meadows and forest communities). The active renewal of natural vegetation is conducted in the studied territory, which develops under the influence of zonal type vegetation and is in the transition stage from ruderal communities to low-grass meadows and different-aged secondary forests with domination of broad-leaved and light-coniferous tree species. The low content of organic carbon and basic nutrients in postagrogenic soils, at this stage of restoration, does not influence the formation and diversity of vegetation cover. However, vegetation continues to suffer the consequences of long-term agricultural use (mainly mechanical impact), resulting in a well-defined mosaic of vegetation communities, the poverty of the floristic composition and the presence of perennial weed species occurring in high abundance. It is better to maintain the land abandoned to further improve soil properties and reduce erosion.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2020.V10.N1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents the results of the state of postagrogenic ecosystems (18-20 years after the land was taken out of crop rotation) in the northern forest-steppe zone, Republic of Bashkortostan (South Ural) where soil cover is represented by postagrogenic gray-humus soils (Regosols). Probably, the unfavorable physical and agrochemical soil properties were a limiting factor in obtaining a profitable crop yield, and it was a reason for the withdrawal of land from agricultural use. Eighteen to twenty years since agricultural fields were taken out of crop rotation, a diverse vegetation cover has formed on postagrogenic soils. Analysis of the NDVI (Normalized Difference Vegetation Index) showed that more than 50% of the territory is covered by average and high vegetation development (low-grass meadows and forest communities). The active renewal of natural vegetation is conducted in the studied territory, which develops under the influence of zonal type vegetation and is in the transition stage from ruderal communities to low-grass meadows and different-aged secondary forests with domination of broad-leaved and light-coniferous tree species. The low content of organic carbon and basic nutrients in postagrogenic soils, at this stage of restoration, does not influence the formation and diversity of vegetation cover. However, vegetation continues to suffer the consequences of long-term agricultural use (mainly mechanical impact), resulting in a well-defined mosaic of vegetation communities, the poverty of the floristic composition and the presence of perennial weed species occurring in high abundance. It is better to maintain the land abandoned to further improve soil properties and reduce erosion.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.