{"title":"Dihydroartemisinin Triggers Ferroptosis in Multidrug-Resistant Leukemia Cells.","authors":"Xueyan Zhang, Ziying Ai, Zhewen Zhang, Rui Dong, Lina Wang, Suya Jin, Hulai Wei","doi":"10.1089/dna.2021.1145","DOIUrl":null,"url":null,"abstract":"The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance. However, dihydroartemisinin (DHA) restrained MDR K562/ADM cell viability and enhanced the sensitivity to ADM by strengthening ferroptosis induced by downregulation of GSH levels and GPX4, IRP2, and FTH expression, upregulation of reactive oxygen species (ROS) levels, and the consequent suppression of total serine/threonine kinase (AKT), total mammalian target of rapamycin (t-mTOR), phosphorylated mTOR (p-mTOR), and p-mTOR/t-mTOR levels. Moreover, compared with K562 cells, MDR K562/ADM cells exhibited greater ROS increases, GSH decreases, and viability rescue after ferroptosis inhibitor treatment owing to further suppression of FTH1, GPX4, p-mTOR, and p-mTOR/t-mTOR. Collectively, the increase in oxidative damage and the blockade of antioxidant defence shaped DHA-induced ferroptosis, which was responsible for the sensitivity of MDR leukemia cells to DHA. Regulating iron homeostasis/ROS/AKT/mTOR might be a potential chemotherapeutic strategy for sensitizing drug-resistant leukemia.","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2021.1145","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance. However, dihydroartemisinin (DHA) restrained MDR K562/ADM cell viability and enhanced the sensitivity to ADM by strengthening ferroptosis induced by downregulation of GSH levels and GPX4, IRP2, and FTH expression, upregulation of reactive oxygen species (ROS) levels, and the consequent suppression of total serine/threonine kinase (AKT), total mammalian target of rapamycin (t-mTOR), phosphorylated mTOR (p-mTOR), and p-mTOR/t-mTOR levels. Moreover, compared with K562 cells, MDR K562/ADM cells exhibited greater ROS increases, GSH decreases, and viability rescue after ferroptosis inhibitor treatment owing to further suppression of FTH1, GPX4, p-mTOR, and p-mTOR/t-mTOR. Collectively, the increase in oxidative damage and the blockade of antioxidant defence shaped DHA-induced ferroptosis, which was responsible for the sensitivity of MDR leukemia cells to DHA. Regulating iron homeostasis/ROS/AKT/mTOR might be a potential chemotherapeutic strategy for sensitizing drug-resistant leukemia.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.