{"title":"Antimicrobial effect of Tetraspanin CD9 Peptides on Pseudomonas aeruginosa","authors":"Khairiyah Murad, S. Ab-Rahim, H. Al-Talib","doi":"10.22207/jpam.17.3.41","DOIUrl":null,"url":null,"abstract":"It is critical to find an alternative therapeutic approach to combat Pseudomonas aeruginosa (P. aeruginosa) that can simultaneously reduce the occurrence of bacterial resistance. The tetraspanin CD9, a highly expressed membrane protein in melanocytes was chosen for this study because it is highly expressed in keratinocytes and has been implicated in the pathogenesis of bacterial infections in a previous study. The antimicrobial activity of CD9 peptides against the standard strain P. aeruginosa (ATCC 27853) and a clinical multidrug-resistant P. aeruginosa (MDR- P. aeruginosa) was studied using the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CD9 peptides were determined by broth microdilution assays with concentrations ranging from 1 mg/mL to 4.88×10-4 mg/mL. The antibiofilm activity of the CD9 peptides was also determined. CD9 peptides showed an 11.75 ± 2.36 mm inhibition zone against the standard P. aeruginosa strain but none against the MDR- P. aeruginosa. Both isolates had the same MIC value, 0.25 mg/mL. The MBC for the standard strain P. aeruginosa was 0.5 mg/mL, while for the MDR- P. aeruginosa strain, it was 1 mg/mL. CD9 peptides significantly inhibited up to 70% biofilm against both P. aeruginosa isolates. CD9 peptides showed a modest inhibitory effect against the standard strain P. aeruginosa but not against MDR- P. aeruginosa. Interestingly, CD9 peptides were found to be a good anti-biofilm treatment against both P. aeruginosa isolates. This study demonstrated that CD9 peptides have the potential to be an alternative antimicrobial treatment against P. aeruginosa.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
It is critical to find an alternative therapeutic approach to combat Pseudomonas aeruginosa (P. aeruginosa) that can simultaneously reduce the occurrence of bacterial resistance. The tetraspanin CD9, a highly expressed membrane protein in melanocytes was chosen for this study because it is highly expressed in keratinocytes and has been implicated in the pathogenesis of bacterial infections in a previous study. The antimicrobial activity of CD9 peptides against the standard strain P. aeruginosa (ATCC 27853) and a clinical multidrug-resistant P. aeruginosa (MDR- P. aeruginosa) was studied using the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CD9 peptides were determined by broth microdilution assays with concentrations ranging from 1 mg/mL to 4.88×10-4 mg/mL. The antibiofilm activity of the CD9 peptides was also determined. CD9 peptides showed an 11.75 ± 2.36 mm inhibition zone against the standard P. aeruginosa strain but none against the MDR- P. aeruginosa. Both isolates had the same MIC value, 0.25 mg/mL. The MBC for the standard strain P. aeruginosa was 0.5 mg/mL, while for the MDR- P. aeruginosa strain, it was 1 mg/mL. CD9 peptides significantly inhibited up to 70% biofilm against both P. aeruginosa isolates. CD9 peptides showed a modest inhibitory effect against the standard strain P. aeruginosa but not against MDR- P. aeruginosa. Interestingly, CD9 peptides were found to be a good anti-biofilm treatment against both P. aeruginosa isolates. This study demonstrated that CD9 peptides have the potential to be an alternative antimicrobial treatment against P. aeruginosa.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.