Dive Into the Unknown: Embracing Uncertainty to Advance Aquatic Remote Sensing

Mortimer Werther, O. Burggraaff
{"title":"Dive Into the Unknown: Embracing Uncertainty to Advance Aquatic Remote Sensing","authors":"Mortimer Werther, O. Burggraaff","doi":"10.34133/remotesensing.0070","DOIUrl":null,"url":null,"abstract":"Uncertainty is an inherent aspect of aquatic remote sensing, originating from sources such as sensor noise, atmospheric variability, and human error. Although many studies have advanced the understanding of uncertainty, it is still not incorporated routinely into aquatic remote sensing research. Neglecting uncertainty can lead to misinterpretations of results, missed opportunities for innovative research, and a limited understanding of complex aquatic systems. In this article, we demonstrate how working with uncertainty can advance remote sensing through three examples: validation and match-up analysis, targeted improvement of data products, and decision-making based on information acquired through remote sensing. We advocate for a change of perspective: the uncertainty inherent in aquatic remote sensing should be embraced, rather than viewed as a limitation. Focusing on uncertainty not only leads to more accurate and reliable results but also paves the way for innovation through novel insights, product improvements, and more informed decision-making in the management and preservation of aquatic ecosystems.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/remotesensing.0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncertainty is an inherent aspect of aquatic remote sensing, originating from sources such as sensor noise, atmospheric variability, and human error. Although many studies have advanced the understanding of uncertainty, it is still not incorporated routinely into aquatic remote sensing research. Neglecting uncertainty can lead to misinterpretations of results, missed opportunities for innovative research, and a limited understanding of complex aquatic systems. In this article, we demonstrate how working with uncertainty can advance remote sensing through three examples: validation and match-up analysis, targeted improvement of data products, and decision-making based on information acquired through remote sensing. We advocate for a change of perspective: the uncertainty inherent in aquatic remote sensing should be embraced, rather than viewed as a limitation. Focusing on uncertainty not only leads to more accurate and reliable results but also paves the way for innovation through novel insights, product improvements, and more informed decision-making in the management and preservation of aquatic ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜入未知:拥抱不确定性推进水生遥感
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
遥感学报
遥感学报 Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
期刊最新文献
Combining solar-induced chlorophyll fluorescence and optical vegetation indices to better understand plant phenological responses to global change Simulating potential tree height for beech-maple-birch forests in northeastern United States on Google Earth Engine Globe230k: A benchmark dense-pixel annotation dataset for global land cover mapping Urban renewal mapping: A case study in Beijing from 2000 to 2020 Improved fine-scale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1