When to Use Different Inferential Methods for Power Analysis and Data Analysis for Between-Subjects Mediation

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2023-04-01 DOI:10.1177/25152459231156606
J. Fossum, A. Montoya
{"title":"When to Use Different Inferential Methods for Power Analysis and Data Analysis for Between-Subjects Mediation","authors":"J. Fossum, A. Montoya","doi":"10.1177/25152459231156606","DOIUrl":null,"url":null,"abstract":"Several options exist for conducting inference on indirect effects in mediation analysis. Although methods that use bootstrapping are the preferred inferential approach for testing mediation, they are time-consuming when the test must be performed many times for a power analysis. Alternatives that are more computationally efficient are not as robust, meaning accuracy of the inferences from these methods is more affected by nonnormal and heteroskedastic data. Previous research has shown that different sample sizes are needed to achieve the same amount of statistical power for different inferential approaches with data that meet all the statistical assumptions of linear regression. By contrast, we explore how similar power estimates are at the same sample size, including when assumptions are violated. We compare the power estimates from six inferential methods for between-subjects mediation using a Monte Carlo simulation study. We varied the path coefficients, inferential methods for the indirect effect, and degree to which assumptions are met. We found that when the assumptions of linear regression are met, three inferential methods consistently perform similarly: the joint significance test, the Monte Carlo confidence interval, and the percentile bootstrap confidence interval. When the assumptions were violated, the nonbootstrapping methods tended to have vastly different power estimates compared with the bootstrapping methods. On the basis of these results, we recommend using the more computationally efficient joint significance test for power analysis only when no assumption violations are hypothesized a priori. We also recommend the joint significance test to pick an optimal starting sample size value for power analysis using the percentile bootstrap confidence interval when assumption violations are suspected.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459231156606","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several options exist for conducting inference on indirect effects in mediation analysis. Although methods that use bootstrapping are the preferred inferential approach for testing mediation, they are time-consuming when the test must be performed many times for a power analysis. Alternatives that are more computationally efficient are not as robust, meaning accuracy of the inferences from these methods is more affected by nonnormal and heteroskedastic data. Previous research has shown that different sample sizes are needed to achieve the same amount of statistical power for different inferential approaches with data that meet all the statistical assumptions of linear regression. By contrast, we explore how similar power estimates are at the same sample size, including when assumptions are violated. We compare the power estimates from six inferential methods for between-subjects mediation using a Monte Carlo simulation study. We varied the path coefficients, inferential methods for the indirect effect, and degree to which assumptions are met. We found that when the assumptions of linear regression are met, three inferential methods consistently perform similarly: the joint significance test, the Monte Carlo confidence interval, and the percentile bootstrap confidence interval. When the assumptions were violated, the nonbootstrapping methods tended to have vastly different power estimates compared with the bootstrapping methods. On the basis of these results, we recommend using the more computationally efficient joint significance test for power analysis only when no assumption violations are hypothesized a priori. We also recommend the joint significance test to pick an optimal starting sample size value for power analysis using the percentile bootstrap confidence interval when assumption violations are suspected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在主体间中介的功效分析和数据分析中,何时使用不同的推理方法
在中介分析中存在几种对间接效应进行推断的方法。尽管使用自引导的方法是测试中介的首选推理方法,但是当为了功率分析必须多次执行测试时,它们会很耗时。计算效率更高的替代方法不那么健壮,这意味着从这些方法推断的准确性更容易受到非正常和异方差数据的影响。以往的研究表明,对于满足线性回归所有统计假设的数据,不同的推理方法需要不同的样本量来获得相同的统计力。相比之下,我们探讨了在相同的样本量下,包括假设被违反时,相似的功率估计是如何产生的。我们使用蒙特卡洛模拟研究比较了受试者间中介的六种推断方法的功率估计。我们改变了路径系数,间接影响的推理方法,以及满足假设的程度。我们发现,当满足线性回归的假设时,三种推理方法的表现一致相似:联合显著性检验、蒙特卡洛置信区间和百分位bootstrap置信区间。当这些假设被违背时,非自举方法与自举方法的功率估计往往相差很大。在这些结果的基础上,我们建议只有在没有先验假设违反的情况下,才使用计算效率更高的联合显著性检验进行功率分析。我们还建议联合显著性检验,以选择一个最优的起始样本量值功率分析时,使用百分位数bootstrap置信区间假设违规怀疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1