AUTOMATIC SAFETY EVALUATION AND VISUALIZATION OF SUBWAY STATION EXCAVATION BASED ON BIM-FEM/FDM INTEGRATED TECHNOLOGY

IF 3.7 3区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Engineering and Management Pub Date : 2022-04-07 DOI:10.3846/jcem.2022.16727
Ping Xie, Rong-jun Zhang, Junjie Zheng, Ziqian Li
{"title":"AUTOMATIC SAFETY EVALUATION AND VISUALIZATION OF SUBWAY STATION EXCAVATION BASED ON BIM-FEM/FDM INTEGRATED TECHNOLOGY","authors":"Ping Xie, Rong-jun Zhang, Junjie Zheng, Ziqian Li","doi":"10.3846/jcem.2022.16727","DOIUrl":null,"url":null,"abstract":"With the progressive promotion of BIM technology in collaborative design and engineering data management, there are large amounts of project information available for intelligent construction, engineering computation and design optimization. In the construction of subway station, BIM technology is still not mature and the engineering design is generally separate from the engineering safety evaluation. Thus, this paper proposed a technology that integrates BIM and numerical simulation (BIM-FEM/FDM integrated technology) to solve the problem of separation between engineering design and computation. A three-dimensional parametric modeling of subway station excavation was first carried out using the Revit® modeling software. Afterward, a FEM/FDM-process oriented data conversion interface was developed to extract and process the critical information from the parametric BIM model for numerical simulation. Then, under the impetus of an auto-simulation interface, the safety evaluation of subway station excavation was realized automatically and visualized graphically. The research of the BIM-FEM/FDM integrated technology presented in this paper has established a supporting platform to achieve the integration of BIM-based design and safety evaluation for subway station excavation.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2022.16727","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

With the progressive promotion of BIM technology in collaborative design and engineering data management, there are large amounts of project information available for intelligent construction, engineering computation and design optimization. In the construction of subway station, BIM technology is still not mature and the engineering design is generally separate from the engineering safety evaluation. Thus, this paper proposed a technology that integrates BIM and numerical simulation (BIM-FEM/FDM integrated technology) to solve the problem of separation between engineering design and computation. A three-dimensional parametric modeling of subway station excavation was first carried out using the Revit® modeling software. Afterward, a FEM/FDM-process oriented data conversion interface was developed to extract and process the critical information from the parametric BIM model for numerical simulation. Then, under the impetus of an auto-simulation interface, the safety evaluation of subway station excavation was realized automatically and visualized graphically. The research of the BIM-FEM/FDM integrated technology presented in this paper has established a supporting platform to achieve the integration of BIM-based design and safety evaluation for subway station excavation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于bim-fem / fdm集成技术的地铁车站开挖安全自动评价与可视化
随着BIM技术在协同设计和工程数据管理中的逐步推广,有大量的项目信息可用于智能施工、工程计算和设计优化。在地铁车站的建设中,BIM技术还不成熟,工程设计通常与工程安全评估分开。因此,本文提出了一种将BIM与数值模拟相结合的技术(BIM-FEM/FDM集成技术)来解决工程设计与计算分离的问题。首次使用Revit®建模软件对地铁站开挖进行三维参数化建模。然后,开发了一个面向FEM/FDM过程的数据转换接口,从参数化BIM模型中提取和处理关键信息,用于数值模拟。然后,在自动仿真界面的推动下,实现了地铁车站开挖安全评价的自动化和可视化。本文提出的BIM-FEM/FDM集成技术的研究,为实现基于BIM的地铁车站开挖设计与安全评价的集成搭建了支撑平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
4.70%
发文量
0
审稿时长
1.7 months
期刊介绍: The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management. The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets. The Journal of Civil Engineering and Management publishes articles in the following fields: building materials and structures, structural mechanics and physics, geotechnical engineering, road and bridge engineering, urban engineering and economy, constructions technology, economy and management, information technologies in construction, fire protection, thermoinsulation and renovation of buildings, labour safety in construction.
期刊最新文献
INTEGRATING ENHANCED OPTIMIZATION WITH FINITE ELEMENT ANALYSIS FOR DESIGNING STEEL STRUCTURE WEIGHT UNDER MULTIPLE CONSTRAINTS RANDOM FIELD-BASED TUNNELING INFORMATION MODELING FRAMEWORK FOR PROBABILISTIC SAFETY ASSESSMENT OF SHIELD TUNNELS SHM-BASED PRACTICAL SAFETY EVALUATION AND VIBRATION CONTROL MODEL FOR STEEL PIPES STUDY OF THE INFLUENCE OF METRO LOADS ON THE DESTRUCTION OF NEARBY BUILDINGS AND CONSTRUCTION STRUCTURES USING BIM TECHNOLOGIES PERFORMANCE EVALUATION OF PALM OIL CLINKER AS CEMENT AND SAND REPLACEMENT MATERIALS IN FOAMED CONCRETE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1