A. Munir, Y. Taryana, M. Yunus, H. Nusantara, M. R. Effendi
{"title":"Two-stage S-Band LNA Development Using Non-Simultaneous Conjugate Match Technique","authors":"A. Munir, Y. Taryana, M. Yunus, H. Nusantara, M. R. Effendi","doi":"10.5614/itbj.ict.res.appl.2019.13.3.3","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a two-stage low noise amplifier (LNA) operating at the S-band frequency that is implemented using the non-simultaneous conjugate match (NSCM) technique. The motivation of this work was to solve the issue of the gain of LNAs designed using the most commonly used technique, i.e. simultaneous conjugate match (SCM), which often produce an increase of other parameter values, i.e. noise figure and voltage standing wave ratio (VSWR). Prior to hardware implementation, the circuit simulation software Advanced Design System (ADS) was applied to design the two-stage S-band LNA and to determine the desired trade-off between its parameters. The proposed two-stage S-band LNA was deployed on an Arlon DiClad527 using a bipolar junction transistor (BJT), type BFP420. Meanwhile, to achieve impedances that match the two-stage S-band LNA circuit, microstrip lines were employed at the input port, the interstage, and the output port. Experimental characterization showed that the realized two-stage S-band LNA produced a gain of 22.77 dB and a noise figure of 3.58 dB at a frequency of 3 GHz. These results were 6.1 dB lower than the simulated gain and 0.76 dB higher than the simulated noise figure respectively.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"13 1","pages":"213-227"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents the development of a two-stage low noise amplifier (LNA) operating at the S-band frequency that is implemented using the non-simultaneous conjugate match (NSCM) technique. The motivation of this work was to solve the issue of the gain of LNAs designed using the most commonly used technique, i.e. simultaneous conjugate match (SCM), which often produce an increase of other parameter values, i.e. noise figure and voltage standing wave ratio (VSWR). Prior to hardware implementation, the circuit simulation software Advanced Design System (ADS) was applied to design the two-stage S-band LNA and to determine the desired trade-off between its parameters. The proposed two-stage S-band LNA was deployed on an Arlon DiClad527 using a bipolar junction transistor (BJT), type BFP420. Meanwhile, to achieve impedances that match the two-stage S-band LNA circuit, microstrip lines were employed at the input port, the interstage, and the output port. Experimental characterization showed that the realized two-stage S-band LNA produced a gain of 22.77 dB and a noise figure of 3.58 dB at a frequency of 3 GHz. These results were 6.1 dB lower than the simulated gain and 0.76 dB higher than the simulated noise figure respectively.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.