Recommendation on data collection and annotation of ocular appearance images in ptosis

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2023-11-01 DOI:10.1016/j.imed.2022.08.003
Jie Meng , Binying Lin , Dongmei Li , Shiqi Hui , Xuanwei Liang , Xianchai Lin , Zhen Mao , Xingyi Li , Zuohong Li , Rongxin Chen , Yahan Yang , Ruiyang Li , Anqi Yan , Haotian Lin , Danping Huang , Chinese Association of Artificial Intelligence; Medical Artificial Intelligence Branch of Guangdong Medical Association
{"title":"Recommendation on data collection and annotation of ocular appearance images in ptosis","authors":"Jie Meng ,&nbsp;Binying Lin ,&nbsp;Dongmei Li ,&nbsp;Shiqi Hui ,&nbsp;Xuanwei Liang ,&nbsp;Xianchai Lin ,&nbsp;Zhen Mao ,&nbsp;Xingyi Li ,&nbsp;Zuohong Li ,&nbsp;Rongxin Chen ,&nbsp;Yahan Yang ,&nbsp;Ruiyang Li ,&nbsp;Anqi Yan ,&nbsp;Haotian Lin ,&nbsp;Danping Huang ,&nbsp;Chinese Association of Artificial Intelligence; Medical Artificial Intelligence Branch of Guangdong Medical Association","doi":"10.1016/j.imed.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Ptosis is a common ophthalmologic condition, and the diagnosis is primarily based on ocular appearance. The diagnosis of such conditions can be improved using emerging technology such as artificial intelligence-based methods. However, unified data collection and labeling standards have not yet been established. This directly impacts the accuracy of ptosis diagnosis based on appearance alone. Therefore, in the present study, we aimed to establish a procedure to obtain and label images to devise a recommendation system for optimal recognition of ptosis based on ocular appearances. This would help to standardize and facilitate data sharing and serve as a guideline for the development and improvisation of algorithms in artificial intelligence for ptosis.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"3 4","pages":"Pages 287-292"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667102622000730/pdfft?md5=2dab8965976e1c6ad9a1b60d39569c90&pid=1-s2.0-S2667102622000730-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102622000730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ptosis is a common ophthalmologic condition, and the diagnosis is primarily based on ocular appearance. The diagnosis of such conditions can be improved using emerging technology such as artificial intelligence-based methods. However, unified data collection and labeling standards have not yet been established. This directly impacts the accuracy of ptosis diagnosis based on appearance alone. Therefore, in the present study, we aimed to establish a procedure to obtain and label images to devise a recommendation system for optimal recognition of ptosis based on ocular appearances. This would help to standardize and facilitate data sharing and serve as a guideline for the development and improvisation of algorithms in artificial intelligence for ptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上睑下垂患者眼部外观影像资料收集及注释的建议
上睑下垂是一种常见的眼科疾病,诊断主要依据眼部外观。利用新兴技术(如基于人工智能的方法)可以改善此类疾病的诊断。然而,统一的数据收集和标记标准尚未建立。这直接影响了仅根据外观诊断上睑下垂的准确性。因此,在本研究中,我们旨在建立一套获取和标记图像的程序,从而设计出一套基于眼部外观的上睑下垂最佳识别推荐系统。这将有助于规范和促进数据共享,并为上睑下垂人工智能算法的开发和改进提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1