Tidal Response of the Geophysical Medium as an Indicator of the Level of Seismic Stress in the Earth’s Crust

IF 0.3 Q4 GEOCHEMISTRY & GEOPHYSICS Seismic Instruments Pub Date : 2022-04-21 DOI:10.3103/S0747923922020086
A. V. Myasnikov
{"title":"Tidal Response of the Geophysical Medium as an Indicator of the Level of Seismic Stress in the Earth’s Crust","authors":"A. V. Myasnikov","doi":"10.3103/S0747923922020086","DOIUrl":null,"url":null,"abstract":"<p>According to records of a 75-m laser interferometer over a 15-year observation period, the deformation component of the lunar–solar tide is distinguished as a result of the reaction of the Earth’s crust to this tide. The tidal response depends on the mechanical properties of the geophysical medium, or, in other words, it is determined by the elastic coefficients at the observation point. If the medium experiences variable tectonic or other mechanical loads, then at extreme values, within the framework of the considered concept, the elastic parameters of the medium should depend on the magnitude of this load or degree of the stress state and thus change the crustal response to the tide. The article demonstrates that, for a quantitative analysis of the stress level, it is necessary to select only the main lunar wave M<sub>2</sub> from the total tide. The main advantage of this wave, as the article shows, is that it is less affected by variations in meteorological factors. Moreover, a complex parameter is required, namely, the amplitude factor and phase value of the observed tidal wave M<sub>2</sub> with respect to the theoretical value of these parameters of this wave. Only the complete set of these parameters makes it possible to correctly assess the level of stress in the geophysical medium and, as a consequence, the ability to predict the formation of an active seismic source in a local zone.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismic Instruments","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0747923922020086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

According to records of a 75-m laser interferometer over a 15-year observation period, the deformation component of the lunar–solar tide is distinguished as a result of the reaction of the Earth’s crust to this tide. The tidal response depends on the mechanical properties of the geophysical medium, or, in other words, it is determined by the elastic coefficients at the observation point. If the medium experiences variable tectonic or other mechanical loads, then at extreme values, within the framework of the considered concept, the elastic parameters of the medium should depend on the magnitude of this load or degree of the stress state and thus change the crustal response to the tide. The article demonstrates that, for a quantitative analysis of the stress level, it is necessary to select only the main lunar wave M2 from the total tide. The main advantage of this wave, as the article shows, is that it is less affected by variations in meteorological factors. Moreover, a complex parameter is required, namely, the amplitude factor and phase value of the observed tidal wave M2 with respect to the theoretical value of these parameters of this wave. Only the complete set of these parameters makes it possible to correctly assess the level of stress in the geophysical medium and, as a consequence, the ability to predict the formation of an active seismic source in a local zone.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地球物理介质的潮汐响应作为地壳地震应力水平的指示
根据75米激光干涉仪15年的观测记录,月日潮的变形分量是地壳对月日潮反应的结果。潮汐响应取决于地球物理介质的力学性质,换句话说,它是由观测点的弹性系数决定的。如果介质经历可变的构造或其他机械载荷,那么在考虑的概念框架内,在极值时,介质的弹性参数应取决于该载荷的大小或应力状态的程度,从而改变地壳对潮汐的响应。本文论证了在定量分析应力水平时,只需从总潮中选取主月波M2即可。正如文章所示,这种波浪的主要优点是受气象因素变化的影响较小。此外,还需要一个复杂的参数,即观测到的M2潮汐波的振幅因子和相位值相对于该波这些参数的理论值。只有掌握了这些参数的完整集合,才有可能正确地评估地球物理介质中的应力水平,从而有能力预测局部区域内活动震源的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seismic Instruments
Seismic Instruments GEOCHEMISTRY & GEOPHYSICS-
自引率
44.40%
发文量
45
期刊介绍: Seismic Instruments is a journal devoted to the description of geophysical instruments used in seismic research. In addition to covering the actual instruments for registering seismic waves, substantial room is devoted to solving instrumental-methodological problems of geophysical monitoring, applying various methods that are used to search for earthquake precursors, to studying earthquake nucleation processes and to monitoring natural and technogenous processes. The description of the construction, working elements, and technical characteristics of the instruments, as well as some results of implementation of the instruments and interpretation of the results are given. Attention is paid to seismic monitoring data and earthquake catalog quality Analysis.
期刊最新文献
Assessment of the Recording Capabilities of the Kolba Seismic Station for Seismic Monitoring in the Western Sector of the Russian Arctic Precision Solution of the VES Inverse Problem for Experimental Data of Long-Term Monitoring of the Earth’s Crust Estimating the Error in Solving the Inverse VES Problem for Precision Investigations of Time Variations in a Geoelectric Section with a Strong Seasonal Effect Neotectonic Stress State of the Chuya–Kurai Depression and Adjacent Structures (Southeastern Altai Mountains) Spectral Content of Acoustic Signals of Artificial Sandstone Samples under Uniaxial Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1