{"title":"Thermo-elastic creep analysis and life assessment of rotating thick pressurized cylindrical shells using third-order shear deformation theory","authors":"T. Taghizadeh, M. Z. Nejad","doi":"10.22059/JCAMECH.2021.306967.546","DOIUrl":null,"url":null,"abstract":"In the present study, time-dependent thermo-elastic creep behavior and life assessment of rotating thick-walled cylindrical shells made of 304L austenitic stainless steel (304L SS) are investigated based on the third-order shear deformation theory (TSDT). Loading is composed of a uniform internal pressure, distributed temperature field, and a centrifugal body force due to rotating speed. Norton’s law is utilized as the material creep constitutive model. Using the minimum total potential energy principle, a system of differential equations in terms of displacement and boundary conditions are derived. Then, the governing equations are solved with an analytical approach, which leads to an accurate solution. Subsequently, an iterative procedure is also proposed to determine the stresses and deformations at different creep times. Larson-Miller Parameter (LMP) and Robinson's linear life fraction damage rule are employed for assessing the creep damages and the remaining life of cylindrical shells. To the best of the researcher’s knowledge, in the previous studies, there is no study carried out into third-order shear deformation theory for thermo-elastic creep analysis of cylinders. To validate the accuracy of the suggested method based on TSDT, a comparison among analytical results and those of the finite element method (FEM) is performed and very good agreement is found. The results indicate that the present analysis is accurate and computationally efficient.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"366-393"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.306967.546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
In the present study, time-dependent thermo-elastic creep behavior and life assessment of rotating thick-walled cylindrical shells made of 304L austenitic stainless steel (304L SS) are investigated based on the third-order shear deformation theory (TSDT). Loading is composed of a uniform internal pressure, distributed temperature field, and a centrifugal body force due to rotating speed. Norton’s law is utilized as the material creep constitutive model. Using the minimum total potential energy principle, a system of differential equations in terms of displacement and boundary conditions are derived. Then, the governing equations are solved with an analytical approach, which leads to an accurate solution. Subsequently, an iterative procedure is also proposed to determine the stresses and deformations at different creep times. Larson-Miller Parameter (LMP) and Robinson's linear life fraction damage rule are employed for assessing the creep damages and the remaining life of cylindrical shells. To the best of the researcher’s knowledge, in the previous studies, there is no study carried out into third-order shear deformation theory for thermo-elastic creep analysis of cylinders. To validate the accuracy of the suggested method based on TSDT, a comparison among analytical results and those of the finite element method (FEM) is performed and very good agreement is found. The results indicate that the present analysis is accurate and computationally efficient.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.