Niloufar Lashkari Shafiei, Farzin Zokaee Ashtiani, A. Fouladitajar
{"title":"Experimental studies on the effects of coagulation and adsorption as a pretreatment process on the microfiltration of oily wastewater","authors":"Niloufar Lashkari Shafiei, Farzin Zokaee Ashtiani, A. Fouladitajar","doi":"10.2166/wrd.2022.052","DOIUrl":null,"url":null,"abstract":"\n To improve the performance of the membrane process in the treatment of oily wastewater, the combined effects of pretreatment, membrane modification, and optimization of operating parameters on the microfiltration membrane system were investigated. First, coagulation and adsorption were used as pretreatment steps. Polyaluminium chloride and ferric chloride were employed as coagulants, and granular activated carbon was used as an adsorbent. In the optimal coagulation condition (1 g/L polyaluminium chloride, pH 7.5), chemical oxygen demand (COD) was reduced by 96%, while in the optimal adsorption condition, in which large amounts of activated carbon were utilized, 48% of COD was eliminated. A membrane of polyethersulfone containing SiO2-g-polymethacrylic acid (PMAA) nanoparticles was then prepared by the non-solvent-induced phase separation method. To reduce fouling and increase the flux of the membrane, the SiO2 nanoparticles were first activated with amine groups and then PMAA was grafted onto the surface of the particles. Subsequently, the operating parameters were studied to optimize the performance of the polyethersulfone (PES)/SiO2-g-PMAA membrane using the response surface methodology method. The results indicated that the flux of the modified membrane for pretreated wastewater was 72.2% higher than that of the PES membrane and non-pretreated wastewater at an optimum pressure of 2 bar and a flow rate of 3.5 L/min.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2022.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3
Abstract
To improve the performance of the membrane process in the treatment of oily wastewater, the combined effects of pretreatment, membrane modification, and optimization of operating parameters on the microfiltration membrane system were investigated. First, coagulation and adsorption were used as pretreatment steps. Polyaluminium chloride and ferric chloride were employed as coagulants, and granular activated carbon was used as an adsorbent. In the optimal coagulation condition (1 g/L polyaluminium chloride, pH 7.5), chemical oxygen demand (COD) was reduced by 96%, while in the optimal adsorption condition, in which large amounts of activated carbon were utilized, 48% of COD was eliminated. A membrane of polyethersulfone containing SiO2-g-polymethacrylic acid (PMAA) nanoparticles was then prepared by the non-solvent-induced phase separation method. To reduce fouling and increase the flux of the membrane, the SiO2 nanoparticles were first activated with amine groups and then PMAA was grafted onto the surface of the particles. Subsequently, the operating parameters were studied to optimize the performance of the polyethersulfone (PES)/SiO2-g-PMAA membrane using the response surface methodology method. The results indicated that the flux of the modified membrane for pretreated wastewater was 72.2% higher than that of the PES membrane and non-pretreated wastewater at an optimum pressure of 2 bar and a flow rate of 3.5 L/min.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.