POLYHEDRAL-BASED METHODS FOR MIXED-INTEGER SOCP IN TREE BREEDING

Sena Safarina, T. Mullin, M. Yamashita
{"title":"POLYHEDRAL-BASED METHODS FOR MIXED-INTEGER SOCP IN TREE BREEDING","authors":"Sena Safarina, T. Mullin, M. Yamashita","doi":"10.15807/jorsj.62.133","DOIUrl":null,"url":null,"abstract":"Optimal contribution selection (OCS) is a mathematical optimization problem that aims to maximize the total benefit from selecting a group of individuals under a constraint on genetic diversity. We are specifically focused on OCS as applied to forest tree breeding, when selected individuals will contribute equally to the gene pool. Since the diversity constraint in OCS can be described with a second-order cone, equal deployment in OCS can be mathematically modeled as mixed-integer second-order cone programming (MI-SOCP). If we apply a general solver for MI-SOCP, non-linearity embedded in OCS requires a heavy computation cost. To address this problem, we propose an implementation of lifted polyhedral programming (LPP) relaxation and a cone-decomposition method (CDM) to generate effective linear approximations for OCS. In particular, CDM successively solves OCS problems much faster than generic approaches for MI-SOCP. The approach of CDM is not limited to OCS, so that we can also apply the approach to other MI-SOCP problems.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.62.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Optimal contribution selection (OCS) is a mathematical optimization problem that aims to maximize the total benefit from selecting a group of individuals under a constraint on genetic diversity. We are specifically focused on OCS as applied to forest tree breeding, when selected individuals will contribute equally to the gene pool. Since the diversity constraint in OCS can be described with a second-order cone, equal deployment in OCS can be mathematically modeled as mixed-integer second-order cone programming (MI-SOCP). If we apply a general solver for MI-SOCP, non-linearity embedded in OCS requires a heavy computation cost. To address this problem, we propose an implementation of lifted polyhedral programming (LPP) relaxation and a cone-decomposition method (CDM) to generate effective linear approximations for OCS. In particular, CDM successively solves OCS problems much faster than generic approaches for MI-SOCP. The approach of CDM is not limited to OCS, so that we can also apply the approach to other MI-SOCP problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树木育种中基于多面体的混合整数SOCP方法
最优贡献选择(OCS)是一个数学优化问题,旨在最大限度地提高在遗传多样性约束下选择一组个体的总体效益。我们特别关注OCS在林木育种中的应用,当选定的个体对基因库的贡献相等时。由于OCS中的分集约束可以用二阶锥来描述,因此OCS中的相等部署可以在数学上建模为混合整数二阶锥规划(MI-SOCP)。如果我们将通用求解器应用于MI-SOCP,嵌入OCS中的非线性需要大量的计算成本。为了解决这个问题,我们提出了一种提升多面体规划(LPP)松弛和锥分解方法(CDM)的实现,以生成OCS的有效线性近似。特别地,CDM比MI-SOCP的一般方法更快地相继解决OCS问题。CDM的方法不局限于OCS,因此我们也可以将该方法应用于其他MI-SOCP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
期刊最新文献
IMPLEMENTING ARROW–DEBREU EQUILIBRIA IN APPROXIMATELY COMPLETE SECURITY MARKETS A RIEMANNIAN-GEOMETRICAL APPROACH TO STRICTLY CONVEX QUADRATIC PROGRAMMING WITH CONVEXITY-PRESERVING METRIC PARAMETERIZATION A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS MIXED-INTEGER DC PROGRAMMING BASED ALGORITHMS FOR THE CIRCULAR PACKING PROBLEM A HYBRID ALGORITHM FOR THE ADWORDS PROBLEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1