{"title":"Analysis of shock wave acceleration from normal detonation reflection","authors":"D. T. Schoeffler, J. E. Shepherd","doi":"10.1007/s00193-023-01126-5","DOIUrl":null,"url":null,"abstract":"<div><p>Normal detonation reflection generates a shock wave that exhibits complicated dynamics as it propagates through the incident detonation and post-detonation flow. Ideal models have historically neglected the influence of a finite detonation thickness on the reflected shock due to its small size relative to laboratory scales. However, one-dimensional numerical simulations show that the reflected shock accelerates to a large shock speed not predicted by ideal theory as it propagates through the incident detonation. Analysis with a derived shock-change equation identifies the principal role of the highly nonuniform upstream flow on producing the large shock acceleration. Simulations of detonation reflection show how a finite detonation thickness affects the entire trajectory of the reflected shock.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 3","pages":"205 - 222"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-023-01126-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Normal detonation reflection generates a shock wave that exhibits complicated dynamics as it propagates through the incident detonation and post-detonation flow. Ideal models have historically neglected the influence of a finite detonation thickness on the reflected shock due to its small size relative to laboratory scales. However, one-dimensional numerical simulations show that the reflected shock accelerates to a large shock speed not predicted by ideal theory as it propagates through the incident detonation. Analysis with a derived shock-change equation identifies the principal role of the highly nonuniform upstream flow on producing the large shock acceleration. Simulations of detonation reflection show how a finite detonation thickness affects the entire trajectory of the reflected shock.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.