{"title":"Induction of polyploidy in saffron (Crocus sativus L.) using colchicine","authors":"Mahpara Kashtwari, S. Jan, A. Wani, M. Dhar","doi":"10.1080/15427528.2021.1994502","DOIUrl":null,"url":null,"abstract":"ABSTRACT Saffron (Crocus sativus L.) is triploid (2 n = 3x = 24, x = 8), which limits its improvement through crop breeding programs. This study was initiated to induce hexaploidy with the intent of restoring sexual stability in saffron. Corms were treated with colchicine concentrations of 0.0%, 0.025%, 0.05%, and 0.1% for 3-h, 6-h, and 9-h. A total of 16 in-vitro shoots showed signs of polyploidization. These colchiploid shoots showed slow but robust growth and produced large-sized cormlets (6.0 g) compared to the control (2.8 g). Leaf epidermal cell morphology, stomatal size and density showed evidence of polyploidization. Hexaploidy (2 n = 6x = 48) was confirmed by root-tip cytology. The hexaploid corms germinated but could not establish in the field. We were able to develop a protocol for in-vitro induction of hexaploidy in C. sativus, but the subsequent growth of hexaploid corms in the field remains a major challenge in restoring the sexual stability in saffron.","PeriodicalId":15468,"journal":{"name":"Journal of Crop Improvement","volume":"36 1","pages":"555 - 581"},"PeriodicalIF":1.0000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427528.2021.1994502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Saffron (Crocus sativus L.) is triploid (2 n = 3x = 24, x = 8), which limits its improvement through crop breeding programs. This study was initiated to induce hexaploidy with the intent of restoring sexual stability in saffron. Corms were treated with colchicine concentrations of 0.0%, 0.025%, 0.05%, and 0.1% for 3-h, 6-h, and 9-h. A total of 16 in-vitro shoots showed signs of polyploidization. These colchiploid shoots showed slow but robust growth and produced large-sized cormlets (6.0 g) compared to the control (2.8 g). Leaf epidermal cell morphology, stomatal size and density showed evidence of polyploidization. Hexaploidy (2 n = 6x = 48) was confirmed by root-tip cytology. The hexaploid corms germinated but could not establish in the field. We were able to develop a protocol for in-vitro induction of hexaploidy in C. sativus, but the subsequent growth of hexaploid corms in the field remains a major challenge in restoring the sexual stability in saffron.
期刊介绍:
Journal of Crop Science and Biotechnology (JCSB) is a peer-reviewed international journal published four times a year. JCSB publishes novel and advanced original research articles on topics related to the production science of field crops and resource plants, including cropping systems, sustainable agriculture, environmental change, post-harvest management, biodiversity, crop improvement, and recent advances in physiology and molecular biology. Also covered are related subjects in a wide range of sciences such as the ecological and physiological aspects of crop production and genetic, breeding, and biotechnological approaches for crop improvement.