F. Marincowitz, M. Owen, J. Muiyser, Peter Holkers
{"title":"Uniformity Index as a Universal Air-Cooled Condenser Fan Performance Metric","authors":"F. Marincowitz, M. Owen, J. Muiyser, Peter Holkers","doi":"10.3390/ijtpp7040035","DOIUrl":null,"url":null,"abstract":"Ambient wind has a negative effect on mechanical forced-draft direct air-cooled steam condenser (ACC) fan volumetric performance, and increases dynamic fan blade loading. Investigating these effects directly using on-site measurement or numerical analysis is complicated, and most previous work has focused on only one effect at the expense of the other. In this study, fan axial velocity inflow uniformity is identified as a single metric offering the potential to holistically qualify ACC fan operation under windy conditions. A 3 × 6 fan cell ACC was modelled with CFD using a blade element theory-based fan model, and clear relationships between the fan inflow uniformity index and both fan volumetric performance and dynamic blade loading were observed in the results. The same relationships were observed in on-site test data collected at a single ACC fan, thus validating the numerical results. The uniformity index can be used in both numerical and experimental work as a means of investigating both fan volumetric performance and dynamic blade loading with less computational and measurement complexity; it also offers a potentially useful means of quantifying the severity of fan operating conditions, to assist with more reliable case-specific fan design and selection.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp7040035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient wind has a negative effect on mechanical forced-draft direct air-cooled steam condenser (ACC) fan volumetric performance, and increases dynamic fan blade loading. Investigating these effects directly using on-site measurement or numerical analysis is complicated, and most previous work has focused on only one effect at the expense of the other. In this study, fan axial velocity inflow uniformity is identified as a single metric offering the potential to holistically qualify ACC fan operation under windy conditions. A 3 × 6 fan cell ACC was modelled with CFD using a blade element theory-based fan model, and clear relationships between the fan inflow uniformity index and both fan volumetric performance and dynamic blade loading were observed in the results. The same relationships were observed in on-site test data collected at a single ACC fan, thus validating the numerical results. The uniformity index can be used in both numerical and experimental work as a means of investigating both fan volumetric performance and dynamic blade loading with less computational and measurement complexity; it also offers a potentially useful means of quantifying the severity of fan operating conditions, to assist with more reliable case-specific fan design and selection.