Lissette A. Cruz, Tristen V. Tellman, O. Igoshin, D. Carson, M. Farach-Carson
{"title":"Abstract 3120: MMP-7 increases migration by decreasing intercellular cell junction complexes in prostate cancer microtumors formed by perlecan/HSPG2","authors":"Lissette A. Cruz, Tristen V. Tellman, O. Igoshin, D. Carson, M. Farach-Carson","doi":"10.1158/1538-7445.AM2021-3120","DOIUrl":null,"url":null,"abstract":"Background: Polarized epithelium is stabilized by lateral cell-cell interactions via cell adhesion molecules (CAMs) and by cell-matrix interactions with basement membrane including with perlecan/HSPG2 (pln). Prostate cancer (PCa) patients with bone metastases have circulating pln fragments, with inverse correlation between MMP-7 staining and loss of pln in cancer tissue. Cleavage of pln by MMP-7 increases cell-matrix interactions and dysregulates cell signaling, permitting migration. We earlier showed pln domain IV-3 (DmIV-3) drives cell-cell cohesion and, when digested with MMP-7, drives cell dyscohesion. Methods: To evaluate the impact of MMP-7 and pln fragments on microtumor dyscohesion and cell migration, uniformly sized PCa microtumors were pre-formed in a microwell system. Pre-formed microtumors were transferred to Dm IV-3 or full length perlecan (FL pln) coated wells for 16-24 hrs. Microtumors were treated with MMP-7 alone or MMP-7 plus predigested Dm IV-3 fragments or MMP-7 plus FL pln fragments. For live cell imaging, tracking of migratory cells leaving microtumors was performed with Imaris software. Co-location of cell adhesion complex components was assessed with Imaris Spots. Results: Pre-formed microtumors cultured with DmIV-3 cleaved by MMP-7 showed lower Pearson9s correlation values at cell boundaries compared to microtumors treated with intact Dm IV-3. Line scan analysis revealed E-cadherin and F-actin fluorescent signals were enriched and co-aligned in microtumors treated with Dm IV-3; enrichment and co-alignment were reduced when DmIV-3 fragments and MMP-7 were present. Track number detected per cell cluster was highest in the presence of FL pln fragments plus MMP-7 along with a measurable change in distribution of track displacement lengths of cells toward high values. Conclusion: Boundary reorganization promotes a migratory cell phenotype in microtumors treated with MMP-7 and DmIV-3 fragments. DmIV-3 fragments generated by MMP-7 cleavage can enhance cell dyscohesion by disrupting interactions between CAMs. Ongoing work will identify DmIV-3 fragment(s) positively associated with tumor dyscohesion that play key roles in secondary metastasis formation. Following patterns of dyscohesion of pre-formed microtumors provides a good model to study dynamic changes in intercellular junction components and quantitate cell migration patterns that foster circulating tumor cell formation and metastasis. Citation Format: Lissette A. Cruz, Tristen V. Tellman, Oleg Igoshin, Daniel Carson, Mary (Cindy) Farach-Carson. MMP-7 increases migration by decreasing intercellular cell junction complexes in prostate cancer microtumors formed by perlecan/HSPG2 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3120.","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-3120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Polarized epithelium is stabilized by lateral cell-cell interactions via cell adhesion molecules (CAMs) and by cell-matrix interactions with basement membrane including with perlecan/HSPG2 (pln). Prostate cancer (PCa) patients with bone metastases have circulating pln fragments, with inverse correlation between MMP-7 staining and loss of pln in cancer tissue. Cleavage of pln by MMP-7 increases cell-matrix interactions and dysregulates cell signaling, permitting migration. We earlier showed pln domain IV-3 (DmIV-3) drives cell-cell cohesion and, when digested with MMP-7, drives cell dyscohesion. Methods: To evaluate the impact of MMP-7 and pln fragments on microtumor dyscohesion and cell migration, uniformly sized PCa microtumors were pre-formed in a microwell system. Pre-formed microtumors were transferred to Dm IV-3 or full length perlecan (FL pln) coated wells for 16-24 hrs. Microtumors were treated with MMP-7 alone or MMP-7 plus predigested Dm IV-3 fragments or MMP-7 plus FL pln fragments. For live cell imaging, tracking of migratory cells leaving microtumors was performed with Imaris software. Co-location of cell adhesion complex components was assessed with Imaris Spots. Results: Pre-formed microtumors cultured with DmIV-3 cleaved by MMP-7 showed lower Pearson9s correlation values at cell boundaries compared to microtumors treated with intact Dm IV-3. Line scan analysis revealed E-cadherin and F-actin fluorescent signals were enriched and co-aligned in microtumors treated with Dm IV-3; enrichment and co-alignment were reduced when DmIV-3 fragments and MMP-7 were present. Track number detected per cell cluster was highest in the presence of FL pln fragments plus MMP-7 along with a measurable change in distribution of track displacement lengths of cells toward high values. Conclusion: Boundary reorganization promotes a migratory cell phenotype in microtumors treated with MMP-7 and DmIV-3 fragments. DmIV-3 fragments generated by MMP-7 cleavage can enhance cell dyscohesion by disrupting interactions between CAMs. Ongoing work will identify DmIV-3 fragment(s) positively associated with tumor dyscohesion that play key roles in secondary metastasis formation. Following patterns of dyscohesion of pre-formed microtumors provides a good model to study dynamic changes in intercellular junction components and quantitate cell migration patterns that foster circulating tumor cell formation and metastasis. Citation Format: Lissette A. Cruz, Tristen V. Tellman, Oleg Igoshin, Daniel Carson, Mary (Cindy) Farach-Carson. MMP-7 increases migration by decreasing intercellular cell junction complexes in prostate cancer microtumors formed by perlecan/HSPG2 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3120.
期刊介绍:
Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression.
Specific topics of interest include, but are not limited to:
Pathway analyses,
Non-coding RNAs,
Circulating tumor cells,
Liquid biopsies,
Exosomes,
Epigenetics,
Cancer stem cells,
Tumor immunology and immunotherapy,
Tumor microenvironment,
Targeted therapies,
Therapy resistance
Cancer genetics,
Cancer risk screening.
Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines.
The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication.
Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).