Estimation of stress-strength reliability for multicomponent system with a generalized inverted exponential distribution

Pub Date : 2023-01-12 DOI:10.1080/15326349.2022.2162545
Liang Wang, Shuo‐Jye Wu, S. Dey, Y. Tripathi, Song Mao
{"title":"Estimation of stress-strength reliability for multicomponent system with a generalized inverted exponential distribution","authors":"Liang Wang, Shuo‐Jye Wu, S. Dey, Y. Tripathi, Song Mao","doi":"10.1080/15326349.2022.2162545","DOIUrl":null,"url":null,"abstract":"Abstract Reliability analysis for a multicomponent stress-strength (MSS) model is discussed in this paper. When strength and stress variables follow generalized inverted exponential distributions (GIEDs) with common scale parameters, maximum likelihood estimate of MSS reliability is established along with associated existence and uniqueness, and approximate confidence interval is also obtained in consequence. Additionally, alternative generalized estimates are proposed for MSS reliability based on constructed pivotal quantities, and associated Monte-Carlo sampling is provided for computation. Further, classical and generalized estimates are also established under unequal strength and stress parameter case. For comparison, bootstrap confidence intervals are also provided under different cases. To compare the equivalence of the strength and stress parameters, likelihood ratio testing is presented as a complement. Finally, extensive simulation studies are carried out to assess the performance of the proposed methods, and a real data example is presented for application. The numerical results indicate that the proposed generalized methods perform better than conventional likelihood results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2162545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Reliability analysis for a multicomponent stress-strength (MSS) model is discussed in this paper. When strength and stress variables follow generalized inverted exponential distributions (GIEDs) with common scale parameters, maximum likelihood estimate of MSS reliability is established along with associated existence and uniqueness, and approximate confidence interval is also obtained in consequence. Additionally, alternative generalized estimates are proposed for MSS reliability based on constructed pivotal quantities, and associated Monte-Carlo sampling is provided for computation. Further, classical and generalized estimates are also established under unequal strength and stress parameter case. For comparison, bootstrap confidence intervals are also provided under different cases. To compare the equivalence of the strength and stress parameters, likelihood ratio testing is presented as a complement. Finally, extensive simulation studies are carried out to assess the performance of the proposed methods, and a real data example is presented for application. The numerical results indicate that the proposed generalized methods perform better than conventional likelihood results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
广义逆指数分布多组分系统应力强度可靠性的估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1