{"title":"The Development ff Artıfıcıal Intellıgence in IPS Systems in The Last Five Years","authors":"M. Gencoglu","doi":"10.53070/bbd.1172803","DOIUrl":null,"url":null,"abstract":"Günümüzde siber güvenliğin temel taşlarından olan IPS (Saldırı Önleme Sistemleri) 2017 yılından günümüze kadar geleneksel insan kontrollü savunma stratejisinden sıyrılıp, NGIPS (Yeni Nesil Saldırı Önleme Sistemleri) olarak da bilinen yapay zekâ ve makine öğrenimi entegrasyonlu yeni bir savunma stratejisine dönüşmüştür. Yapay zekaya entegre bu yeni IPS çözümleri yıllar içerisinde farklı algoritmalar ve teknikler ile saldırı önlemede kullanılmıştır. Bu çalışmada yapay zekaya entegre sistemler hakkında bilgi verilmiş ve son beş yıl içerisindeki gelişimi IPS çözümleri genelinde ve Fortinet IPS çözümü özelinde incelenmiştir. IPS çözümlerindeki bu yapay zekâ ile savunma, yine yapay zekâ ile yapılan saldırılar neticesinde doğru orantılı olarak gelişmiştir. IPS çözümlerinde makine öğrenimi üç temel teknikte kullanır. Bunlar, veri toplama, özellik seçimi ve model oluşturmadır. Model oluşturma yöntemi ile sınıflandırılan veriler yapay zekâ algoritmaları ile olumlu ya da olumsuz olarak değerlendirilip müdahale edilir. Geleneksel yöntemler yani yapay zekâ öncesi yöntemler bu algılamalarda yetersiz kalmıştır. Gelişen siber saldırılar ve her geçen gün keşfedilen yeni açıklıkların insan sınırlarının üzerinde olması sebebi ile IPS sistemlerde yapay zekânın var olması ve geliştirilmesi zorunlu hale gelmiştir. \nBu çalışmanın IPS’lerde yapay zekâ gelişiminin, siber savunmadaki önemi ile ilgili farkındalık yaratacağı değerlendirilmektedir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1172803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Günümüzde siber güvenliğin temel taşlarından olan IPS (Saldırı Önleme Sistemleri) 2017 yılından günümüze kadar geleneksel insan kontrollü savunma stratejisinden sıyrılıp, NGIPS (Yeni Nesil Saldırı Önleme Sistemleri) olarak da bilinen yapay zekâ ve makine öğrenimi entegrasyonlu yeni bir savunma stratejisine dönüşmüştür. Yapay zekaya entegre bu yeni IPS çözümleri yıllar içerisinde farklı algoritmalar ve teknikler ile saldırı önlemede kullanılmıştır. Bu çalışmada yapay zekaya entegre sistemler hakkında bilgi verilmiş ve son beş yıl içerisindeki gelişimi IPS çözümleri genelinde ve Fortinet IPS çözümü özelinde incelenmiştir. IPS çözümlerindeki bu yapay zekâ ile savunma, yine yapay zekâ ile yapılan saldırılar neticesinde doğru orantılı olarak gelişmiştir. IPS çözümlerinde makine öğrenimi üç temel teknikte kullanır. Bunlar, veri toplama, özellik seçimi ve model oluşturmadır. Model oluşturma yöntemi ile sınıflandırılan veriler yapay zekâ algoritmaları ile olumlu ya da olumsuz olarak değerlendirilip müdahale edilir. Geleneksel yöntemler yani yapay zekâ öncesi yöntemler bu algılamalarda yetersiz kalmıştır. Gelişen siber saldırılar ve her geçen gün keşfedilen yeni açıklıkların insan sınırlarının üzerinde olması sebebi ile IPS sistemlerde yapay zekânın var olması ve geliştirilmesi zorunlu hale gelmiştir.
Bu çalışmanın IPS’lerde yapay zekâ gelişiminin, siber savunmadaki önemi ile ilgili farkındalık yaratacağı değerlendirilmektedir.
如今,2017年至2017年,基于网络安全基石的IPS已成为人工智能和机器学习的新倡导策略,被称为NGIPS(新的必要攻击预防系统)。多年来,工业智能一直被用来通过不同的算法和技术来防止攻击。在这项研究中,人工智能获得了有关系统的信息,并在过去五年中通过通用IPS解决方案和Fortinet IPS分析进行了调查。IPSçözümlerindeki bu yapay zekâile savenma,yine yapay zekâle yapılan saldırılar neticesinde doğru orantılıolarak gelişmiştir。IPS解决方案中的机器学习使用三种基本技术。这些不会创建数据收集、特性选择和模型。通过人工智能算法以模型的形式对分类数据进行成功或否定的评估。传统的方法,即人工智能,在这些概念上是不够的。发达的网络攻击和每天发现的新解释很难在IPS系统中开发和发展,因为人类边界上有人工智能。在IPS中,据评估,人工智能的发展将关注网络防御的重要性。