Kallista A. Bonawitz, P. Kairouz, H. B. McMahan, Daniel Ramage
{"title":"Federated Learning and Privacy","authors":"Kallista A. Bonawitz, P. Kairouz, H. B. McMahan, Daniel Ramage","doi":"10.1145/3494834.3500240","DOIUrl":null,"url":null,"abstract":"Centralized data collection can expose individuals to privacy risks and organizations to legal risks if data is not properly managed. Federated learning is a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. This article provides a brief introduction to key concepts in federated learning and analytics with an emphasis on how privacy technologies may be combined in real-world systems and how their use charts a path toward societal benefit from aggregate statistics in new domains and with minimized risk to individuals and to the organizations who are custodians of the data.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"19 1","pages":"87 - 114"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3494834.3500240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 33
Abstract
Centralized data collection can expose individuals to privacy risks and organizations to legal risks if data is not properly managed. Federated learning is a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. This article provides a brief introduction to key concepts in federated learning and analytics with an emphasis on how privacy technologies may be combined in real-world systems and how their use charts a path toward societal benefit from aggregate statistics in new domains and with minimized risk to individuals and to the organizations who are custodians of the data.