An Intelligent IoT-enabled Lighting System for Energy-efficient Crop Production

Q2 Energy Journal of Daylighting Pub Date : 2021-02-15 DOI:10.15627/JD.2021.6
Jun Jiang, M. Moallem, Youbin Zheng
{"title":"An Intelligent IoT-enabled Lighting System for Energy-efficient Crop Production","authors":"Jun Jiang, M. Moallem, Youbin Zheng","doi":"10.15627/JD.2021.6","DOIUrl":null,"url":null,"abstract":"In this paper, an intelligent lighting instrumentation and automation system is presented with the objective of achieving high energyefficiency in greenhouse supplemental lighting based on the Internet of Things (IoT) technology. The system runs on a Raspbian operating system which interacts with wireless-enabled light emitting diode (LED) fixtures for plant growth, an online data server, and different light sensors including RGB and quantum sensors. The communication is achieved through RestFul API, UART, and I2C. The system is utilized to implement a feedback controller that automatically adjusts the light dimming levels and, in particular, the ratio of red and blue light intensities based on the plants’ needs. A series of experiments involving plant growth were conducted which indicate that the proposed system can achieve energy-savings up to 34%, when compared to a conventional time scheduling scheme. Additionally, the experiments demonstrate that the system can achieve a highly uniform light distribution under unpredictable natural lighting conditions while saving energy due to supplemental lighting. © 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":"8 1","pages":"86-99"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/JD.2021.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an intelligent lighting instrumentation and automation system is presented with the objective of achieving high energyefficiency in greenhouse supplemental lighting based on the Internet of Things (IoT) technology. The system runs on a Raspbian operating system which interacts with wireless-enabled light emitting diode (LED) fixtures for plant growth, an online data server, and different light sensors including RGB and quantum sensors. The communication is achieved through RestFul API, UART, and I2C. The system is utilized to implement a feedback controller that automatically adjusts the light dimming levels and, in particular, the ratio of red and blue light intensities based on the plants’ needs. A series of experiments involving plant growth were conducted which indicate that the proposed system can achieve energy-savings up to 34%, when compared to a conventional time scheduling scheme. Additionally, the experiments demonstrate that the system can achieve a highly uniform light distribution under unpredictable natural lighting conditions while saving energy due to supplemental lighting. © 2021 The Author(s). Published by solarlits.com. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种智能物联网照明系统,用于节能作物生产
本文提出了一种基于物联网(IoT)技术的智能照明仪表及自动化系统,以实现温室补充照明的高能效。该系统运行在Raspbian操作系统上,该系统与用于植物生长的无线发光二极管(LED)装置、在线数据服务器以及包括RGB和量子传感器在内的不同光传感器进行交互。通过RestFul API、UART和I2C实现通信。该系统用于实现一个反馈控制器,该控制器可以根据植物的需要自动调整调光水平,特别是红光和蓝光强度的比例。一系列涉及植物生长的实验表明,与传统的时间调度方案相比,所提出的系统可以节省高达34%的能源。此外,实验表明,该系统可以在不可预测的自然光照条件下实现高度均匀的光分布,同时由于补充照明而节省能源。©2021作者。由solarlits.com出版。这是一篇基于CC BY许可(https://creativecommons.org/licenses/by/4.0/)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Daylighting
Journal of Daylighting Energy-Renewable Energy, Sustainability and the Environment
CiteScore
4.00
自引率
0.00%
发文量
18
审稿时长
10 weeks
期刊介绍: Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal
期刊最新文献
Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran's Cold Semi-Arid Climate Exploring Methodological Considerations: A Literature Review on How Lighting Affects the Sleep and Cognition in Healthy Older Adults Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers Electrochromic Glazing and Evaluation of Visual and Non-Visual Effects of Daylight: Simulation Studies for Brasilia – Brazil Analysing the Daylighting Performance of the Main Prayer-hall in the Great Mosque of Hama, Syria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1