{"title":"Coarse-grained atomistic modeling of dislocations and generalized crystal plasticity","authors":"A. Selimov, K. Chu, D. McDowell","doi":"10.1142/s2424913021420133","DOIUrl":null,"url":null,"abstract":"Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation field problems. Prospects for further developments are discussed.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021420133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation field problems. Prospects for further developments are discussed.