{"title":"Large deviations for the volume of k-nearest neighbor balls","authors":"C. Hirsch, Taegyu Kang, Takashi Owada","doi":"10.1214/23-ejp965","DOIUrl":null,"url":null,"abstract":"This paper develops the large deviations theory for the point process associated with the Euclidean volume of $k$-nearest neighbor balls centered around the points of a homogeneous Poisson or a binomial point processes in the unit cube. Two different types of large deviation behaviors of such point processes are investigated. Our first result is the Donsker-Varadhan large deviation principle, under the assumption that the centering terms for the volume of $k$-nearest neighbor balls grow to infinity more slowly than those needed for Poisson convergence. Additionally, we also study large deviations based on the notion of $\\mathcal M_0$-topology, which takes place when the centering terms tend to infinity sufficiently fast, compared to those for Poisson convergence. As applications of our main theorems, we discuss large deviations for the number of Poisson or binomial points of degree at most $k$ in a geometric graph in the dense regime.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp965","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper develops the large deviations theory for the point process associated with the Euclidean volume of $k$-nearest neighbor balls centered around the points of a homogeneous Poisson or a binomial point processes in the unit cube. Two different types of large deviation behaviors of such point processes are investigated. Our first result is the Donsker-Varadhan large deviation principle, under the assumption that the centering terms for the volume of $k$-nearest neighbor balls grow to infinity more slowly than those needed for Poisson convergence. Additionally, we also study large deviations based on the notion of $\mathcal M_0$-topology, which takes place when the centering terms tend to infinity sufficiently fast, compared to those for Poisson convergence. As applications of our main theorems, we discuss large deviations for the number of Poisson or binomial points of degree at most $k$ in a geometric graph in the dense regime.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.