{"title":"Force Computation for Dielectrics Using Shape Calculus","authors":"P. Panchal, N. Ren, R. Hiptmair","doi":"10.1515/cmam-2022-0112","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We are concerned with the numerical computation of electrostatic forces/torques in only piece-wise homogeneous materials using the boundary element method (BEM). Conventional force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair, Electrostatic force computation with boundary element methods, SMAI J. Comput. Math. 8 (2022), 49–74]. Motivated by the virtual work principle which is interpreted using techniques of shape calculus, and using the adjoint method from shape optimization, we derive stable interface-based force functionals suitable for use with BEM. This is done in the framework of single-trace direct boundary integral equations for second-order transmission problems. Numerical tests confirm the fast asymptotic convergence and superior accuracy of the new formulas for the computation of total forces and torques.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.