Electrochemical Reduction of Oxygen and Nitric Oxide on Mn-Based Perovskites with Different A-Site Cations

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2020-03-29 DOI:10.1155/2020/4013697
K. Kammer Hansen
{"title":"Electrochemical Reduction of Oxygen and Nitric Oxide on Mn-Based Perovskites with Different A-Site Cations","authors":"K. Kammer Hansen","doi":"10.1155/2020/4013697","DOIUrl":null,"url":null,"abstract":"Four LnMnO3+δ (Ln = La, Pr, Sm, and Gd) perovskites were synthesized and characterized by powder XRD. It was shown that the perovskite lattice became more and more distorted when lowering the size of the A-site cation. The manganite-based perovskites were evaluated for the ability to electrochemically reduce oxygen and nitric oxide in the temperature range of 200 to 400°C. At the lowest temperature, the electrodes were better at reducing nitric oxide than oxygen. At higher temperatures, the activity for the reduction of oxygen and nitric oxide became similar. The activation energies for the reduction of oxygen and nitric oxide were markedly different for LaMnO3+δ and PrMnO3+δ whereas it was similar for SmMnO3+δ and GdMnO3+δ.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2020 1","pages":"1-6"},"PeriodicalIF":2.3000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/4013697","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/4013697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

Abstract

Four LnMnO3+δ (Ln = La, Pr, Sm, and Gd) perovskites were synthesized and characterized by powder XRD. It was shown that the perovskite lattice became more and more distorted when lowering the size of the A-site cation. The manganite-based perovskites were evaluated for the ability to electrochemically reduce oxygen and nitric oxide in the temperature range of 200 to 400°C. At the lowest temperature, the electrodes were better at reducing nitric oxide than oxygen. At higher temperatures, the activity for the reduction of oxygen and nitric oxide became similar. The activation energies for the reduction of oxygen and nitric oxide were markedly different for LaMnO3+δ and PrMnO3+δ whereas it was similar for SmMnO3+δ and GdMnO3+δ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧和一氧化氮在不同A位阳离子Mn基钙钛矿上的电化学还原
合成了4种LnMnO3+δ (Ln = La, Pr, Sm, Gd)钙钛矿,并用粉末XRD对其进行了表征。结果表明,随着a位阳离子尺寸的减小,钙钛矿晶格的畸变程度越来越大。在200 ~ 400℃的温度范围内,对锰基钙钛矿电化学还原氧和一氧化氮的能力进行了评价。在最低温度下,电极在还原一氧化氮方面优于氧。在较高的温度下,氧和一氧化氮的还原活性变得相似。LaMnO3+δ和PrMnO3+δ对氧和一氧化氮的还原活化能有显著差异,而SmMnO3+δ和GdMnO3+δ对氧和一氧化氮的还原活化能基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1