The 9-criteria evaluation framework for perceptions survey: the case of VA’s Learners’ Perceptions Survey

T. Kashner, Christopher Clarke, D. Aron, John M. Byrne, G. Cannon, D. Deemer, S. Gilman, C. Kaminetzky, L. Loo, Sophia Li, Annie B. Wicker, S. Keitz
{"title":"The 9-criteria evaluation framework for perceptions survey: the case of VA’s Learners’ Perceptions Survey","authors":"T. Kashner, Christopher Clarke, D. Aron, John M. Byrne, G. Cannon, D. Deemer, S. Gilman, C. Kaminetzky, L. Loo, Sophia Li, Annie B. Wicker, S. Keitz","doi":"10.1080/24709360.2018.1553362","DOIUrl":null,"url":null,"abstract":"ABSTRACT For its clinical, epidemiologic, educational, and health services research, evaluation, administrative, regulatory, and accreditation purposes, the perceptions survey is a data collection tool that asks observers to describe perceptions of their experiences with a defined phenomenon of interest. In practice, these surveys are often subject to criticism for not having been thoroughly evaluated before its first application using a consistent and comprehensive set of criteria for validity and reliability. This paper introduces a 9-criteria framework to assess perceptions surveys that integrates criteria from multiple evaluation sources. The 9-criteria framework was applied to data from the Department of Veterans Affairs’ Learners’ Perceptions Survey (LPS) that had been administered to national and local samples, and from findings obtained through a literature review involving LPS survey data. We show that the LPS is a robust tool that may serve as a model for design and validation of other perceptions surveys. Findings underscore the importance of using all nine criteria to validate perceptions survey data.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"4 1","pages":"140 - 171"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1553362","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1553362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT For its clinical, epidemiologic, educational, and health services research, evaluation, administrative, regulatory, and accreditation purposes, the perceptions survey is a data collection tool that asks observers to describe perceptions of their experiences with a defined phenomenon of interest. In practice, these surveys are often subject to criticism for not having been thoroughly evaluated before its first application using a consistent and comprehensive set of criteria for validity and reliability. This paper introduces a 9-criteria framework to assess perceptions surveys that integrates criteria from multiple evaluation sources. The 9-criteria framework was applied to data from the Department of Veterans Affairs’ Learners’ Perceptions Survey (LPS) that had been administered to national and local samples, and from findings obtained through a literature review involving LPS survey data. We show that the LPS is a robust tool that may serve as a model for design and validation of other perceptions surveys. Findings underscore the importance of using all nine criteria to validate perceptions survey data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知调查的9项标准评估框架——以弗吉尼亚大学学生认知调查为例
为了临床、流行病学、教育和卫生服务研究、评估、行政、监管和认证的目的,感知调查是一种数据收集工具,要求观察者用感兴趣的定义现象描述他们对经验的感知。在实践中,这些调查经常受到批评,因为在首次应用之前没有使用一套一致和全面的有效性和可靠性标准进行彻底评估。本文介绍了一个9个标准框架来评估来自多个评估来源的综合标准的感知调查。9个标准框架应用于退伍军人事务部学习者感知调查(LPS)的数据,该调查已对国家和地方样本进行了管理,并从涉及LPS调查数据的文献综述中获得的结果。我们表明,LPS是一个强大的工具,可以作为设计和验证其他感知调查的模型。调查结果强调了使用所有九个标准来验证感知调查数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1