An improved nonlinear path following method with on-line transition trajectory generation for fixed-wing unmanned aerial vehicles

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2022-05-01 DOI:10.1177/17298806221104901
Qing-yang Chen, Yafei Lu
{"title":"An improved nonlinear path following method with on-line transition trajectory generation for fixed-wing unmanned aerial vehicles","authors":"Qing-yang Chen, Yafei Lu","doi":"10.1177/17298806221104901","DOIUrl":null,"url":null,"abstract":"To enhance the path following ability for fixed-wing unmanned aerial vehicles, and solve the stability and high-accuracy tracking problems due to inappropriate route switchover time during intense maneuvers, an improved nonlinear path following method with on-line transition trajectory generation was proposed in the article. Firstly, the influence of the guidance distance to the nonlinear path following method was verified through a flight experiment, and the importance of the critical time for route switchover was deduced. The on-line transition trajectory generation was expected to realize the automation of the switchover process, including the computation of the critical switchover time and desired paths. Secondly, to generate the on-line transition trajectory, the computation method was derived for typical intense maneuvers, such as the turning maneuver for square trajectory, or the converging maneuver to the expected trajectory under initial numerous errors (such as modifying the waypoint during a flight mission). Finally, to solve the situations in which the transition trajectory does not exist, an adaptive guidance distance algorithm was proposed to improve the flight stability and accuracy. From the simulation and flight experiment results, stability and high accuracy can be guaranteed for different situations with the proposed methods. The path following error is smaller than 1.0 m when it is converged (in downwind or upwind situations), which is important for the method to be used widely.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221104901","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the path following ability for fixed-wing unmanned aerial vehicles, and solve the stability and high-accuracy tracking problems due to inappropriate route switchover time during intense maneuvers, an improved nonlinear path following method with on-line transition trajectory generation was proposed in the article. Firstly, the influence of the guidance distance to the nonlinear path following method was verified through a flight experiment, and the importance of the critical time for route switchover was deduced. The on-line transition trajectory generation was expected to realize the automation of the switchover process, including the computation of the critical switchover time and desired paths. Secondly, to generate the on-line transition trajectory, the computation method was derived for typical intense maneuvers, such as the turning maneuver for square trajectory, or the converging maneuver to the expected trajectory under initial numerous errors (such as modifying the waypoint during a flight mission). Finally, to solve the situations in which the transition trajectory does not exist, an adaptive guidance distance algorithm was proposed to improve the flight stability and accuracy. From the simulation and flight experiment results, stability and high accuracy can be guaranteed for different situations with the proposed methods. The path following error is smaller than 1.0 m when it is converged (in downwind or upwind situations), which is important for the method to be used widely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的固定翼无人机过渡轨迹在线生成非线性路径跟踪方法
为了提高固定翼无人机的路径跟踪能力,解决在激烈机动过程中由于路径切换时间不合适而导致的稳定性和高精度跟踪问题,提出了一种在线生成过渡轨迹的改进非线性路径跟踪方法。首先,通过飞行实验验证了制导距离对非线性路径跟随方法的影响,并推导了关键时刻对路径切换的重要性。在线转换轨迹生成有望实现转换过程的自动化,包括关键转换时间和所需路径的计算。其次,为了生成在线过渡轨迹,推导了典型剧烈机动的计算方法,如方形轨迹的转弯机动,或在初始大量误差(如飞行任务中修改航路点)下收敛到预期轨迹的机动。最后,针对不存在过渡轨迹的情况,提出了一种自适应制导距离算法,以提高飞行稳定性和精度。从仿真和飞行实验结果来看,该方法可以保证不同情况下的稳定性和高精度。当收敛时(在顺风或逆风情况下),路径跟随误差小于1.0m,这对该方法的广泛应用很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1