A novel low line regulation CMOS voltage reference without BJTs and resistors

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-09-10 DOI:10.23919/SAIEE.2020.9194381
Changqing Zhang;Xia Wu;Wanling Deng;Junkai Huang
{"title":"A novel low line regulation CMOS voltage reference without BJTs and resistors","authors":"Changqing Zhang;Xia Wu;Wanling Deng;Junkai Huang","doi":"10.23919/SAIEE.2020.9194381","DOIUrl":null,"url":null,"abstract":"A novel CMOS-only low line regulation voltage reference is presented in this paper. An output subcircuit composed of MOSFETs operating in the subthreshold region and saturation region is utilized to eliminate the temperature dependence of mobility and oxide capacitance, and produces a temperature-insensitive voltage reference. No bipolar junction transistors (BJTs) or resistors are used which can decrease the area greatly. By using most of the transistors operating in the subthreshold region, the power dissipation and the supply voltage are reduced. The proposed voltage reference is designed in the standard 0.18 μm CMOS process. The simulation results show that the output voltage is 958.971 mV at TT process corners, a temperature coefficient of 18.6096 ppm/°C range from20 °C to 110 °C is achieved, the line regulator (LR) of the proposed circuit is 0.037 mV/V from 1.5 V to 2.5 V supply voltage, and the power supply rejection ratio (PSRR) is75.77 dB at 100 Hz. The active area of the presented voltage reference is 0.0038 mm\n<sup>2</sup>\n.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/SAIEE.2020.9194381","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9194381/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A novel CMOS-only low line regulation voltage reference is presented in this paper. An output subcircuit composed of MOSFETs operating in the subthreshold region and saturation region is utilized to eliminate the temperature dependence of mobility and oxide capacitance, and produces a temperature-insensitive voltage reference. No bipolar junction transistors (BJTs) or resistors are used which can decrease the area greatly. By using most of the transistors operating in the subthreshold region, the power dissipation and the supply voltage are reduced. The proposed voltage reference is designed in the standard 0.18 μm CMOS process. The simulation results show that the output voltage is 958.971 mV at TT process corners, a temperature coefficient of 18.6096 ppm/°C range from20 °C to 110 °C is achieved, the line regulator (LR) of the proposed circuit is 0.037 mV/V from 1.5 V to 2.5 V supply voltage, and the power supply rejection ratio (PSRR) is75.77 dB at 100 Hz. The active area of the presented voltage reference is 0.0038 mm 2 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型无BJT和电阻器的低线调节CMOS电压基准
摘要本文提出了一种新型的纯cmos低电压基准电路。利用在亚阈值区和饱和区工作的mosfet组成的输出子电路来消除迁移率和氧化物电容的温度依赖性,并产生温度不敏感的基准电压。没有使用双极结晶体管(BJTs)或电阻,可以大大减少面积。由于大部分晶体管工作在亚阈值区域,降低了功耗和电源电压。所提出的电压基准是在标准0.18µm CMOS工艺中设计的。仿真结果表明,该电路在TT工艺拐角处的输出电压为958.971 mV,在-20 ~ 110℃范围内的温度系数为18.6096 ppm/°C,在1.5 ~ 2.5 V电压范围内的线路稳压(LR)为0.037 mV/V, 100 Hz时的电源抑制比(PSRR)为-75.77 dB。给出的电压基准的有效区域为0.0038 mm 2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1