A. Klimek-Kopyra, A. Oleksy, T. Zając, T. Głąb, R. Mazurek
{"title":"Impact of inoculant and foliar fertilization on root system parameters of pea (Pisum sativum l.)","authors":"A. Klimek-Kopyra, A. Oleksy, T. Zając, T. Głąb, R. Mazurek","doi":"10.17951/PJSS.2018.51.1.23","DOIUrl":null,"url":null,"abstract":"In recent years, sustainable crop development has played a key role in current strategies to improve roots activity, which increase nutrients uptake in pulse crop. Our study presents the relationship between root system morphology, inoculant application with and without foliar fertilization and nitrogen accumulation in soil and plants. Two inoculants: Nitragina and IUNG, foliar fertilizer (Photrel), as well as two pea cultivars were studied in three years (2009–2011) period. The research has shown that bacterial inoculants have signifiant inflence on the selected parameters of pea root systems. Gel inoculant signifiantly increased mean root diameter (0.44 mm), compared to control (0.33 mm), whereas combination of Nitragina inoculant with micronutrient fertilization signifiantly increased root length density (1.05 cm·cm-3), compared to control (0.85 cm·cm-3). Additionally, the bacterial inoculant IUNG has signifiantly decreased the root length density in roots classes between 0.2–0.5 mm in the most humid year. The impact of inoculants on roots parameters was strongly related to weather conditions. In a dry year, a signifiant decrease of mean root diameter, specifi root length and increase of root dry mass were observed. Nitrogen accumulation in seeds signifiantly increased after gel inoculant application. A higher N content was proven in the fodder cultivar, but the edible cultivar was observed to accumulate more N in the seeds, which caused a Nitrogen Harvest index for this plant (80.0%).","PeriodicalId":20295,"journal":{"name":"Polish Journal of Soil Science","volume":"51 1","pages":"23-39"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17951/PJSS.2018.51.1.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, sustainable crop development has played a key role in current strategies to improve roots activity, which increase nutrients uptake in pulse crop. Our study presents the relationship between root system morphology, inoculant application with and without foliar fertilization and nitrogen accumulation in soil and plants. Two inoculants: Nitragina and IUNG, foliar fertilizer (Photrel), as well as two pea cultivars were studied in three years (2009–2011) period. The research has shown that bacterial inoculants have signifiant inflence on the selected parameters of pea root systems. Gel inoculant signifiantly increased mean root diameter (0.44 mm), compared to control (0.33 mm), whereas combination of Nitragina inoculant with micronutrient fertilization signifiantly increased root length density (1.05 cm·cm-3), compared to control (0.85 cm·cm-3). Additionally, the bacterial inoculant IUNG has signifiantly decreased the root length density in roots classes between 0.2–0.5 mm in the most humid year. The impact of inoculants on roots parameters was strongly related to weather conditions. In a dry year, a signifiant decrease of mean root diameter, specifi root length and increase of root dry mass were observed. Nitrogen accumulation in seeds signifiantly increased after gel inoculant application. A higher N content was proven in the fodder cultivar, but the edible cultivar was observed to accumulate more N in the seeds, which caused a Nitrogen Harvest index for this plant (80.0%).
期刊介绍:
The Journal focuses mainly on all issues of soil sciences, agricultural chemistry, soil technology and protection and soil environmental functions. Papers concerning various aspects of functioning of the environment (including geochemistry, geomophology, geoecology etc.) as well as new techniques of surveing, especially remote sensing, are also published.