Cao Zhu-rong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yu-Kun, Wang Peng, Chen Bo-lun, Wang Feng, He Haien, Liang Xingzhu, Xu Ze-ping, Yang Dong, Yang Jia-min, Jiang Shao-en, Ding Yong-kun, Zhang Wei-Yan
{"title":"Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion","authors":"Cao Zhu-rong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yu-Kun, Wang Peng, Chen Bo-lun, Wang Feng, He Haien, Liang Xingzhu, Xu Ze-ping, Yang Dong, Yang Jia-min, Jiang Shao-en, Ding Yong-kun, Zhang Wei-Yan","doi":"10.11884/HPLPB202032.200099","DOIUrl":null,"url":null,"abstract":"In the study of laser driven inertial confinement fusion (ICF), the image data obtained through X-ray high-speed photography technology can be used to analyze the spatial and temporal evolution of the plasma with fluid state produced by work and energy transport. The research of X-ray high-speed photography technology has always been an important part of the development of ICF diagnostics. The Laser Fusion Research Center of China Academy of Engineering Physics has made important progresses in the research of X-ray high-speed photography technology in recent years. These advances include: (1) making a success in developing the X-ray camera with 100ps exposure time for Shenguang laser facilities, which has reached the international advanced level as a whole, and is characterised in such aspects as high sensitivity, transmission-type band-pass filtering and miniaturized design; (2) proposing new types of X-ray high-speed photography technologies with 10 ps exposure time such as the micro-sweep gating technology to break the bottleneck of temporal resolution; (3) taking the lead in carrying out theoretical design, technical verification and engineering design of the radiation-hardened X-ray high-speed camera in China; (4) making the efforts on modeling and simulation on target debris and carrying out the special experiments for the first time in China to verify the simulation results.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"32 1","pages":"112004-1-112004-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202032.200099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In the study of laser driven inertial confinement fusion (ICF), the image data obtained through X-ray high-speed photography technology can be used to analyze the spatial and temporal evolution of the plasma with fluid state produced by work and energy transport. The research of X-ray high-speed photography technology has always been an important part of the development of ICF diagnostics. The Laser Fusion Research Center of China Academy of Engineering Physics has made important progresses in the research of X-ray high-speed photography technology in recent years. These advances include: (1) making a success in developing the X-ray camera with 100ps exposure time for Shenguang laser facilities, which has reached the international advanced level as a whole, and is characterised in such aspects as high sensitivity, transmission-type band-pass filtering and miniaturized design; (2) proposing new types of X-ray high-speed photography technologies with 10 ps exposure time such as the micro-sweep gating technology to break the bottleneck of temporal resolution; (3) taking the lead in carrying out theoretical design, technical verification and engineering design of the radiation-hardened X-ray high-speed camera in China; (4) making the efforts on modeling and simulation on target debris and carrying out the special experiments for the first time in China to verify the simulation results.