Integrated use of georadar, electrical resistivity, and SPT for site characterization and water content estimative

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-06-19 DOI:10.28927/sr.2023.006422
Érdeson Farias, S. Machado, H. Giacheti, A. Cerqueira
{"title":"Integrated use of georadar, electrical resistivity, and SPT for site characterization and water content estimative","authors":"Érdeson Farias, S. Machado, H. Giacheti, A. Cerqueira","doi":"10.28927/sr.2023.006422","DOIUrl":null,"url":null,"abstract":"Geophysical methods are potent tools for geotechnical site characterization in a nondestructive way. They improve the extrapolation of punctual data from direct survey methods, allowing a fast and cost-effective evaluation of large areas. Ground Penetrating Radar (GPR) and DC electrical resistivity (ER) are the most requested methods for geotechnical and geoenvironmental applications. Their use, however, is usually uncoupled, with no sharing of information from one method to another to improve data interpretation. This case study illustrates the development of protocols and scripts in R© programming language for ER and GPR data analysis with Standard Penetration Tests (SPT) data to produce more accurate information on subsurface conditions concerning lithology, water content, and groundwater table (GWT) position. The SPT data were used to associate resistivity ranges with different soil lithologies and GPR pulse velocities for estimating the soil water content. Estimated water content values aided in interpreting ER data and locating the groundwater table. The contacts between layers in the radargrams allowed the refinement of the ER model, rendering 3D volumes for each soil layer in situ.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.006422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Geophysical methods are potent tools for geotechnical site characterization in a nondestructive way. They improve the extrapolation of punctual data from direct survey methods, allowing a fast and cost-effective evaluation of large areas. Ground Penetrating Radar (GPR) and DC electrical resistivity (ER) are the most requested methods for geotechnical and geoenvironmental applications. Their use, however, is usually uncoupled, with no sharing of information from one method to another to improve data interpretation. This case study illustrates the development of protocols and scripts in R© programming language for ER and GPR data analysis with Standard Penetration Tests (SPT) data to produce more accurate information on subsurface conditions concerning lithology, water content, and groundwater table (GWT) position. The SPT data were used to associate resistivity ranges with different soil lithologies and GPR pulse velocities for estimating the soil water content. Estimated water content values aided in interpreting ER data and locating the groundwater table. The contacts between layers in the radargrams allowed the refinement of the ER model, rendering 3D volumes for each soil layer in situ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合使用地质雷达、电阻率和SPT进行现场表征和含水量估算
地球物理方法是以无损方式进行岩土工程现场表征的有力工具。它们改进了直接调查方法对准时数据的推断,从而能够对大面积进行快速且具有成本效益的评估。探地雷达(GPR)和直流电阻率(ER)是岩土工程和地质环境应用中最需要的方法。然而,它们的使用通常是不耦合的,没有从一种方法到另一种方法共享信息来改进数据解释。本案例研究说明了用R©编程语言开发的协议和脚本,用于ER和GPR数据分析以及标准贯入试验(SPT)数据,以产生有关岩性、含水量和地下水位(GWT)位置的地下条件的更准确信息。SPT数据用于将电阻率范围与不同的土壤岩性和GPR脉冲速度相关联,以估计土壤含水量。估计的含水量值有助于解释ER数据和定位地下水位。雷达图中各层之间的接触允许对ER模型进行细化,从而在现场绘制每个土层的3D体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1