Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam
{"title":"Numerical assessment of stability behaviour in supercritical CO2 based NCLS configured with heater, heat exchanger and isothermal wall as heat source","authors":"Srivatsa Thimmaiah, Tabish Wahidi, A. Yadav, A. Mahalingam","doi":"10.18186/thermal.1285268","DOIUrl":null,"url":null,"abstract":"Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285268","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional numerical analysis is presented in this study to assess the transient and stability behaviour of supercritical CO2 (sCO2) based NCLs configured with three different types of heat sources, i.e., heater, a hot heat exchanger (HHX) and isothermal wall (ISO) at the source, and a cold heat exchanger (CHX) at the sink in all three NCLs. Unsteady threedimensional conservation equations (mass, momentum and energy equations) are solved to assess the transient and stability behaviour of sCO2 mass flow rate, temperature and velocity as a function of time. Further, the effect of pressure on sCO2 mass flow rate is also assessed to compare the loops performance. Performance of the loop has been studied for various heat inputs at the source by keeping constant mass flow rate and temperature at the sink. It is observed that for any boundary condition at the source, the loop experiences some initial disturbances or instabilities before reaching the steady-state. However, the time needed to attain a steady-state varies with the nature of heat input employed at the source. Results show a higher magnitude of instabilities in the Heater-CHX loop than HHX-CHX and ISO-CHX loops, and these instabilities mitigate at a faster rate in the ISO- CHX loop at all levels of heat input and operating pressure of the loop. It is also observed that as loop fluid operating pressure increases, the instability of the system decreases and the loop fluid mass flow rate increases. Further, the Nusselt number in the Heater-CHX loop is more than other loops because of its high turbulent kinetic energy. The findings of this study are validated with the published experimental and numerical data and found a good agreement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.