Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology

IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology & Biotechnological Equipment Pub Date : 2022-12-31 DOI:10.1080/13102818.2022.2095303
N. Shen, Shiyong Li, Yan Qin, Mingguo Jiang, Hongyan Zhang
{"title":"Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology","authors":"N. Shen, Shiyong Li, Yan Qin, Mingguo Jiang, Hongyan Zhang","doi":"10.1080/13102818.2022.2095303","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, conditions for succinic acid (SA) production using xylose mother liquor (XML) as culture medium by Actinobacillus succinogenes GXAS137 were optimized. Firstly, single–factor experiments were performed to evaluate the basal culture medium for SA fermentation. Thereafter, the Plackett–Burman design was used to screen out three significant factors of XML, corn steep liquor powder (CSLP) and MgCO3 affecting the SA yields from the original nine factors. Subsequent use of steepest ascent experiment determined the center area of the three factors. Finally, the response surface methodology was used to further optimize the interactions between the three main factors and predict the maximum SA concentration through Box-Behnken design. The optimal conditions of SA fermentation were maximally documented in the XML (110 g/L), CSLP (18.86 g/L) and MgCO3 (69.12 g/L). The maximum production of SA was 58.06 ± 0.57 g/L after 60 h with a yield of 0.72 ± 0.06 g/g total sugar, approaching the predicted value (57.99 g/L). It was 1.63-fold of the SA production obtained with the basic medium (35.54 g/L). In addition, batch fermentations were carried out in a 1.3-L stirred bioreactor and SA reached 58.47 g/L. These results indicate that XML could be an alternative substrate for the economical production of SA by A. succinogenes GXAS137.","PeriodicalId":9076,"journal":{"name":"Biotechnology & Biotechnological Equipment","volume":"36 1","pages":"442 - 450"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Biotechnological Equipment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13102818.2022.2095303","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In the present study, conditions for succinic acid (SA) production using xylose mother liquor (XML) as culture medium by Actinobacillus succinogenes GXAS137 were optimized. Firstly, single–factor experiments were performed to evaluate the basal culture medium for SA fermentation. Thereafter, the Plackett–Burman design was used to screen out three significant factors of XML, corn steep liquor powder (CSLP) and MgCO3 affecting the SA yields from the original nine factors. Subsequent use of steepest ascent experiment determined the center area of the three factors. Finally, the response surface methodology was used to further optimize the interactions between the three main factors and predict the maximum SA concentration through Box-Behnken design. The optimal conditions of SA fermentation were maximally documented in the XML (110 g/L), CSLP (18.86 g/L) and MgCO3 (69.12 g/L). The maximum production of SA was 58.06 ± 0.57 g/L after 60 h with a yield of 0.72 ± 0.06 g/g total sugar, approaching the predicted value (57.99 g/L). It was 1.63-fold of the SA production obtained with the basic medium (35.54 g/L). In addition, batch fermentations were carried out in a 1.3-L stirred bioreactor and SA reached 58.47 g/L. These results indicate that XML could be an alternative substrate for the economical production of SA by A. succinogenes GXAS137.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应面法优化琥珀酸放线菌木糖母液产琥珀酸的工艺条件
摘要本研究以木糖母液(XML)为培养基,对琥珀酸放线菌GXAS137产琥珀酸的条件进行了优化。首先,通过单因素试验对SA发酵的基础培养基进行了评价。随后,采用Plackett-Burman设计从原9个因子中筛选出XML、玉米浆粉(CSLP)和MgCO3 3个影响SA产率的显著因子。随后利用最陡爬坡实验确定了三个因素的中心面积。最后,利用响应面法进一步优化3个主要因素之间的相互作用,并通过Box-Behnken设计预测最大SA浓度。发酵SA的最佳条件为XML (110 g/L)、CSLP (18.86 g/L)和MgCO3 (69.12 g/L)。60 h后SA的最大产量为58.06±0.57 g/L,总糖产量为0.72±0.06 g/g,接近预测值(57.99 g/L)。为基础培养基(35.54 g/L)的1.63倍。在1.3 L搅拌生物反应器中分批发酵,SA达到58.47 g/L。这些结果表明,XML可以作为琥珀酸A. succinogenes GXAS137经济生产SA的替代底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology & Biotechnological Equipment
Biotechnology & Biotechnological Equipment 工程技术-生物工程与应用微生物
CiteScore
3.10
自引率
0.00%
发文量
90
审稿时长
1 months
期刊介绍: Biotechnology & Biotechnological Equipment (B&BE) is an international open access journal publishing cutting-edge research. A modern world requires modern biotechnology and nanobiology. The journal is a forum that provides society with valuable information for a healthy and better life and promotes “the Science and Culture of Nature”. The journal publishes original research and reviews with a multidisciplinary perspective; expanded case reports with a focus on molecular medical research and advanced practice in evidence-based medicine are also considered.
期刊最新文献
Polymorphism in SNP G1 of the GDF9 gene associated with reproductive traits in Bulgarian dairy sheep Costs of treating type 2 diabetes mellitus and its complications A new strategy of multiplex real-time RT-qPCR assay for differentiating Omicron variants from other SARS-CoV-2 lineages Fast and precise multi-site mutagenesis on linear DNA fragments Analysis of contrast sensitivity in patients implanted with Acunex Vario and LuxSmart extended depth of focus (E-DOF) intraocular lenses (IOLs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1