The effects of temperature on the dynamics of the biological neural network

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2022-01-21 DOI:10.1007/s10867-021-09598-1
Mohammad B Jabbari, Mahdi Rezaei Karamati
{"title":"The effects of temperature on the dynamics of the biological neural network","authors":"Mohammad B Jabbari,&nbsp;Mahdi Rezaei Karamati","doi":"10.1007/s10867-021-09598-1","DOIUrl":null,"url":null,"abstract":"<div><p>The nerve cells are responsible for transmitting messages through the action potential, which generates electrical stimulation. One of the methods and tools of electrical stimulation is infrared neural stimulation (INS). Since the mechanism of INS is based on electromagnetic radiation, it explains how a neuron is stimulated by the heat distribution which is generated by the laser. The present study is focused on modeling and simulating the conditions in which deformed temperature related to the Hodgkin and Huxley model can be effectively and safely used to activate the neurons, the fires of which depend on temperature. The results explain ionic channels in the single and network neurons, which behave differently when thermal stimulation is applied to the cell. It causes the variation of the pattern of the action potential in the Hodgkin-Huxley (HH) model. The stability of the phase-plane at high temperatures has lower fluctuations than at low temperatures, so the channel gates open and close faster. The behavior of these channels under various membrane temperatures shows that the firing rate increases with temperature. Also, the domain of the spikes reduces and the spikes occur faster with increasing temperature.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09598-1.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09598-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The nerve cells are responsible for transmitting messages through the action potential, which generates electrical stimulation. One of the methods and tools of electrical stimulation is infrared neural stimulation (INS). Since the mechanism of INS is based on electromagnetic radiation, it explains how a neuron is stimulated by the heat distribution which is generated by the laser. The present study is focused on modeling and simulating the conditions in which deformed temperature related to the Hodgkin and Huxley model can be effectively and safely used to activate the neurons, the fires of which depend on temperature. The results explain ionic channels in the single and network neurons, which behave differently when thermal stimulation is applied to the cell. It causes the variation of the pattern of the action potential in the Hodgkin-Huxley (HH) model. The stability of the phase-plane at high temperatures has lower fluctuations than at low temperatures, so the channel gates open and close faster. The behavior of these channels under various membrane temperatures shows that the firing rate increases with temperature. Also, the domain of the spikes reduces and the spikes occur faster with increasing temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度对生物神经网络动力学的影响
神经细胞负责通过动作电位传递信息,从而产生电刺激。红外神经刺激(INS)是电刺激的方法和工具之一。由于INS的机制是基于电磁辐射,它解释了由激光产生的热分布是如何刺激神经元的。目前的研究重点是建模和模拟与霍奇金和赫胥黎模型相关的变形温度可以有效和安全地用于激活神经元的条件,其火焰依赖于温度。这些结果解释了单个神经元和网络神经元中的离子通道,当对细胞施加热刺激时,它们的行为不同。它引起了霍奇金-赫胥黎(HH)模型中动作电位模式的变化。相平面在高温下的稳定性波动比低温下小,因此通道栅极的开启和关闭速度更快。这些通道在不同膜温度下的行为表明,成烧速率随温度的升高而增加。随着温度的升高,峰的范围减小,峰的发生速度加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1