Research on collaborative filtering recommendation algorithm based on social network

Tian Zhang
{"title":"Research on collaborative filtering recommendation algorithm based on social network","authors":"Tian Zhang","doi":"10.1504/ijims.2019.103874","DOIUrl":null,"url":null,"abstract":"For users of social-based social networking services, we propose a local random walk-based friend recommendation approach by bringing together social network and tie strength. We firstly construct a weighted friend network as the basis for friend recommendation. Then, users' similarity is determined by a local random walk-based similarity measure on a weighted friend network. Experiments show that we use real social network data to evaluate the new method. The validity of the method is illustrated.","PeriodicalId":39293,"journal":{"name":"International Journal of Internet Manufacturing and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijims.2019.103874","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Manufacturing and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijims.2019.103874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

For users of social-based social networking services, we propose a local random walk-based friend recommendation approach by bringing together social network and tie strength. We firstly construct a weighted friend network as the basis for friend recommendation. Then, users' similarity is determined by a local random walk-based similarity measure on a weighted friend network. Experiments show that we use real social network data to evaluate the new method. The validity of the method is illustrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社交网络的协同过滤推荐算法研究
对于基于社交的社交网络服务的用户,我们提出了一种基于本地随机行走的朋友推荐方法,将社交网络和联系强度结合在一起。我们首先构建一个加权朋友网络作为朋友推荐的基础。然后,通过加权朋友网络上基于局部随机行走的相似度度量来确定用户的相似度。实验表明,我们使用真实的社会网络数据来评估新方法。验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Internet Manufacturing and Services
International Journal of Internet Manufacturing and Services Engineering-Industrial and Manufacturing Engineering
CiteScore
0.70
自引率
0.00%
发文量
7
期刊最新文献
Cloud Manufacturing Developments: A Review Sustainable Manufacturing of Advanced Mg-Zn-HAp/rGO Hybrid Nanocomposites and Evaluation of Mechanical and Microstructural Properties Analysis of green manufacturing attributes through partial least square structural equation modelling Perspectives of Pilot Testing as a Lean Tool: To conduct a Sustainable Survey in Indian Textile Industry A real-time data acquisition method of industrial production line based on OPC technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1