E-Bayesian and Hierarchical Bayesian Estimation of Inverse Rayleigh Distribution

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-04-30 DOI:10.1080/01966324.2021.1914250
R. B. Athirakrishnan, E. I. Abdul-Sathar
{"title":"E-Bayesian and Hierarchical Bayesian Estimation of Inverse Rayleigh Distribution","authors":"R. B. Athirakrishnan, E. I. Abdul-Sathar","doi":"10.1080/01966324.2021.1914250","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes E-Bayesian and Hierarchical Bayesian estimation method to estimate the scale parameter and reversed hazard rate of inverse Rayleigh distribution. These estimators are derived under squared error, entropy and precautionary loss functions. The definition and properties of proposed estimators are given. The proposed estimators are suitable for all sample sizes and perform better than the existing classical estimator, such as MLE, with high efficiency. Simulated and real data sets are also discussed for studying the performance of the estimators, which shows that the proposed estimators are efficient and easy to use.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"70 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1914250","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1914250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 14

Abstract

Abstract This article proposes E-Bayesian and Hierarchical Bayesian estimation method to estimate the scale parameter and reversed hazard rate of inverse Rayleigh distribution. These estimators are derived under squared error, entropy and precautionary loss functions. The definition and properties of proposed estimators are given. The proposed estimators are suitable for all sample sizes and perform better than the existing classical estimator, such as MLE, with high efficiency. Simulated and real data sets are also discussed for studying the performance of the estimators, which shows that the proposed estimators are efficient and easy to use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆瑞利分布的E-Bayesian和层次Bayesian估计
摘要本文提出了E-Bayesian和层次贝叶斯估计方法来估计逆瑞利分布的尺度参数和反向危险率。这些估计量是在平方误差、熵和预防损失函数下导出的。给出了估计量的定义和性质。所提出的估计器适用于所有样本大小,并且比现有的经典估计器(如MLE)性能更好,具有较高的效率。为了研究估计量的性能,还讨论了模拟和真实数据集,这表明所提出的估计量是有效的,易于使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1