Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022

IF 3 Q2 CHEMISTRY, ANALYTICAL Analytical science advances Pub Date : 2023-05-10 DOI:10.1002/ansa.202300009
Caroline Géhin, Stephen J. Fowler, Drupad K. Trivedi
{"title":"Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022","authors":"Caroline Géhin,&nbsp;Stephen J. Fowler,&nbsp;Drupad K. Trivedi","doi":"10.1002/ansa.202300009","DOIUrl":null,"url":null,"abstract":"<p>Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called “lipidomics” and is one of the fastest-growing <i>omics</i> technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202300009","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202300009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called “lipidomics” and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
咀嚼脂肪:2022年脂质组学如何改变我们对人类健康和疾病的理解
脂质是在所有生物体中发挥重要作用的生物分子。它们执行许多细胞功能,例如1)形成细胞和亚细胞膜,2)储存和使用能量,以及3)在细胞内和细胞间信号转导过程中充当化学信使。对生物系统中细胞脂质的途径和网络的大规模研究被称为“脂质组学”,是过去二十年中增长最快的组学技术之一。凭借最先进的质谱仪器和复杂的数据处理,临床研究显示了人类脂质成分在健康和疾病中的变化,从而使其成为临床应用(如疾病诊断、治疗决策和药物开发。这篇综述全面概述了临床研究中使用的当前工作流程,从样本收集和准备到数据和临床解释。随后对2022年的应用进行了评估,并展望了临床脂质组学令人兴奋的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Effect of orange fruit peel extract concentration on the synthesis of zinc oxide nanoparticles Future worldwide coronavirus disease 2019 epidemic predictions by Gaidai multivariate risk evaluation method Application of a kosmotrope (Na2CO3) and chaotrope (NaCl) in chemometric optimization of aqueous two-phase extraction of bioactive compounds in Hypoxis iridifolia Challenges and recent advances in quantitative mass spectrometry-based metabolomics Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1