Synthesis and Applications of Biopolymer /FeO Nanocomposites: A Review

IF 0.7 4区 材料科学 Q4 ELECTROCHEMISTRY Journal of New Materials For Electrochemical Systems Pub Date : 2022-03-31 DOI:10.14447/jnmes.v25i1.a02
S. Warkar
{"title":"Synthesis and Applications of Biopolymer /FeO Nanocomposites: A Review","authors":"S. Warkar","doi":"10.14447/jnmes.v25i1.a02","DOIUrl":null,"url":null,"abstract":"Magnetic oxide nanoparticles have engaged most consideration due to their rare character, such as easy separation, surface-to- volume ratio, paramagnetic and high surface area. Natural biopolymers, namely, (Chitosan, Guar-Gum, Tamarind, Alginate, Dextran, Pectin) have posed as an incredible host for the preparation of magnetic nanoparticles. Biopolymer based magnetic nanocomposites have been fabricated from long time using method like co-precipitations, green synthesis, in-situ, hydrothermal and wet chemical method. Properties of biopolymer magnetic nanocomposites draw attention to the researchers towards fabricating at the nano level for various applications like as adsorptions inorganic metal, organic impurity, targeted drug-delivery, bio-sensing, catalysis activity, antimicrobial activity, antifungal activity, antioxidant activity, anti-cancer activity, energy, environmental remediation, waste water treatment and textiles. This review is designed to report very firstly reported biopolymer magnetic nanoparticles (BMNPs) in last ten years and attractive approach in various applications.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v25i1.a02","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 4

Abstract

Magnetic oxide nanoparticles have engaged most consideration due to their rare character, such as easy separation, surface-to- volume ratio, paramagnetic and high surface area. Natural biopolymers, namely, (Chitosan, Guar-Gum, Tamarind, Alginate, Dextran, Pectin) have posed as an incredible host for the preparation of magnetic nanoparticles. Biopolymer based magnetic nanocomposites have been fabricated from long time using method like co-precipitations, green synthesis, in-situ, hydrothermal and wet chemical method. Properties of biopolymer magnetic nanocomposites draw attention to the researchers towards fabricating at the nano level for various applications like as adsorptions inorganic metal, organic impurity, targeted drug-delivery, bio-sensing, catalysis activity, antimicrobial activity, antifungal activity, antioxidant activity, anti-cancer activity, energy, environmental remediation, waste water treatment and textiles. This review is designed to report very firstly reported biopolymer magnetic nanoparticles (BMNPs) in last ten years and attractive approach in various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物聚合物/FeO纳米复合材料的合成与应用综述
磁性氧化物纳米颗粒因其易于分离、比表面积大、顺磁性强等特点而备受关注。天然生物聚合物,即壳聚糖、瓜尔胶、罗望子、海藻酸盐、葡聚糖、果胶,已经成为制备磁性纳米粒子的不可思议的宿主。长期以来,生物聚合物基磁性纳米复合材料的制备方法有共沉淀法、绿色合成法、原位法、水热法和湿化学法等。生物高分子磁性纳米复合材料的特性吸引了研究人员在纳米水平上制造各种应用,如吸附无机金属、有机杂质、靶向药物递送、生物传感、催化活性、抗菌活性、抗真菌活性、抗氧化活性、抗癌活性、能源、环境修复、废水处理和纺织等。本文综述了近十年来首次报道的生物高分子磁性纳米颗粒(BMNPs)及其应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of New Materials For Electrochemical Systems
Journal of New Materials For Electrochemical Systems ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.
期刊最新文献
Mathematical Modelling of Billboard Type Central Solar Receiver for Domestic Application Templating Nanostructured Aromatic Based Materials as Possible Anode Electrodes for Na-ion Batteries: A Computational DFT Approach The Experimental Study on Lead Acid Battery Driven E-Rickshaw Performance Using Capacitor Bank Sensors Based Optimized Closed Loop Control Algorithm to Minimize Hypoglycemia/Hyperglycemia using 4-Variate Time Series Data Investigation on the Impact of Coating Thickness Setting and Calendering on the NMC 811 Cathode Performances for Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1