{"title":"Natural Convection Instabilities Using the Lattice Boltzmann Method: Cavity Aspect Ratio Effect","authors":"El Mehdi Berra, M. Faraji","doi":"10.2514/1.t6690","DOIUrl":null,"url":null,"abstract":"In this paper, the natural convection instability flows in a partial heating cavity filled with air and cooled by the top wall are numerically investigated using the lattice Boltzmann method; and the cavity is partially heated and contains a heat source from below that is presented as an electronic component. To track the cavity aspect ratio effect on the heat transfer over time, first, a series of numerical simulations is completed by varying the aspect ratio of the cavity from [Formula: see text] to [Formula: see text]. The results show that the change in aspect ratio has a noticeable impact on the heat transfer behavior, specifically on the temperature distribution in the cavity, and the numerical results obtained indicate two different temperature distribution regimes: a stable steady regime, and a stable oscillatory regime. In the second step, a numerical simulation is done to study the natural convection instability into the cavity for the aspect ratio configuration of [Formula: see text]. The results show that the cavity structure has an important effect on the heat transfer in the cavity. The lattice Boltzmann method choice as a numerical simulation approach is due to its considerable result in fluid flow simulation and also to its simplicity of implementation, and it has become a suitable alternative method for solving fluid dynamics and thermal problems, as well as challenged traditional methods in many sectors by its simplicity of implementation.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6690","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the natural convection instability flows in a partial heating cavity filled with air and cooled by the top wall are numerically investigated using the lattice Boltzmann method; and the cavity is partially heated and contains a heat source from below that is presented as an electronic component. To track the cavity aspect ratio effect on the heat transfer over time, first, a series of numerical simulations is completed by varying the aspect ratio of the cavity from [Formula: see text] to [Formula: see text]. The results show that the change in aspect ratio has a noticeable impact on the heat transfer behavior, specifically on the temperature distribution in the cavity, and the numerical results obtained indicate two different temperature distribution regimes: a stable steady regime, and a stable oscillatory regime. In the second step, a numerical simulation is done to study the natural convection instability into the cavity for the aspect ratio configuration of [Formula: see text]. The results show that the cavity structure has an important effect on the heat transfer in the cavity. The lattice Boltzmann method choice as a numerical simulation approach is due to its considerable result in fluid flow simulation and also to its simplicity of implementation, and it has become a suitable alternative method for solving fluid dynamics and thermal problems, as well as challenged traditional methods in many sectors by its simplicity of implementation.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.