J. Guillot, Diego Restrepo Leal, Carlos Robles-Algarín, I. Oliveros, P. A. Niño-Suárez
{"title":"Wind power prediction using a nonlinear autoregressive exogenous model network: the case of Santa Marta, Colombia","authors":"J. Guillot, Diego Restrepo Leal, Carlos Robles-Algarín, I. Oliveros, P. A. Niño-Suárez","doi":"10.11591/ijece.v13i5.pp4856-4867","DOIUrl":null,"url":null,"abstract":"The monitoring of wind installations is key for predicting their future behavior, due to the strong dependence on weather conditions and the stochastic nature of the wind. However, in some places, in situ measurements are not always available. In this paper, active power predictions for the city of Santa Marta-Colombia using a nonlinear autoregressive exogenous model (NARX) network were performed. The network was trained with a reliable dataset from a wind farm located in Turkey, because the meteorological data from the city of Santa Marta are unavailable or unreliable on certain dates. Three training and testing cases were designed, with different input variables and varying the network target between active power and wind speed. The dataset was obtained from the Kaggle platform, and is made up of five variables: date, active power, wind speed, theoretical power, and wind direction; each with 50,530 samples, which were preprocessed and, in some cases, normalized, to facilitate the neural network learning. For the training, testing and validation processes, a correlation coefficient of 0.9589 was obtained for the best scenario with the data from Turkey, while the best correlation coefficient for the data from Santa Marta was 0.8537.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4856-4867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The monitoring of wind installations is key for predicting their future behavior, due to the strong dependence on weather conditions and the stochastic nature of the wind. However, in some places, in situ measurements are not always available. In this paper, active power predictions for the city of Santa Marta-Colombia using a nonlinear autoregressive exogenous model (NARX) network were performed. The network was trained with a reliable dataset from a wind farm located in Turkey, because the meteorological data from the city of Santa Marta are unavailable or unreliable on certain dates. Three training and testing cases were designed, with different input variables and varying the network target between active power and wind speed. The dataset was obtained from the Kaggle platform, and is made up of five variables: date, active power, wind speed, theoretical power, and wind direction; each with 50,530 samples, which were preprocessed and, in some cases, normalized, to facilitate the neural network learning. For the training, testing and validation processes, a correlation coefficient of 0.9589 was obtained for the best scenario with the data from Turkey, while the best correlation coefficient for the data from Santa Marta was 0.8537.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]