{"title":"Adaptive KNN-Based Extended Collaborative Filtering Recommendation Services","authors":"Luong Vuong Nguyen, Quoc-Trinh Vo, Tri-Hai Nguyen","doi":"10.3390/bdcc7020106","DOIUrl":null,"url":null,"abstract":"In the current era of e-commerce, users are overwhelmed with countless products, making it difficult to find relevant items. Recommendation systems generate suggestions based on user preferences, to avoid information overload. Collaborative filtering is a widely used model in modern recommendation systems. Despite its popularity, collaborative filtering has limitations that researchers aim to overcome. In this paper, we enhance the K-nearest neighbor (KNN)-based collaborative filtering algorithm for a recommendation system, by considering the similarity of user cognition. This enhancement aimed to improve the accuracy in grouping users and generating more relevant recommendations for the active user. The experimental results showed that the proposed model outperformed benchmark models, in terms of MAE, RMSE, MAP, and NDCG metrics.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7020106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
In the current era of e-commerce, users are overwhelmed with countless products, making it difficult to find relevant items. Recommendation systems generate suggestions based on user preferences, to avoid information overload. Collaborative filtering is a widely used model in modern recommendation systems. Despite its popularity, collaborative filtering has limitations that researchers aim to overcome. In this paper, we enhance the K-nearest neighbor (KNN)-based collaborative filtering algorithm for a recommendation system, by considering the similarity of user cognition. This enhancement aimed to improve the accuracy in grouping users and generating more relevant recommendations for the active user. The experimental results showed that the proposed model outperformed benchmark models, in terms of MAE, RMSE, MAP, and NDCG metrics.