Bayesian inference for unit root in smooth transition autoregressive models and its application to OECD countries

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2020-12-14 DOI:10.1515/snde-2019-0133
Shivam Jaiswal, A. Chaturvedi, M. Bhatti
{"title":"Bayesian inference for unit root in smooth transition autoregressive models and its application to OECD countries","authors":"Shivam Jaiswal, A. Chaturvedi, M. Bhatti","doi":"10.1515/snde-2019-0133","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a Bayesian unit root test for testing a non-stationary random walk of nonlinear exponential smooth transition autoregressive process. It investigates the performance of Bayes estimators and Bayesian unit root test due to its superiority in estimation and power properties than reported in existing literature. The proposed approach is applied to the real effective exchange rates of 10 selected countries of the organization of economic co-operation and development (OECD) and the paper observe some interesting findings which demonstrate the usefulness of the model.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"25 - 34"},"PeriodicalIF":0.7000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2019-0133","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2019-0133","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This paper proposes a Bayesian unit root test for testing a non-stationary random walk of nonlinear exponential smooth transition autoregressive process. It investigates the performance of Bayes estimators and Bayesian unit root test due to its superiority in estimation and power properties than reported in existing literature. The proposed approach is applied to the real effective exchange rates of 10 selected countries of the organization of economic co-operation and development (OECD) and the paper observe some interesting findings which demonstrate the usefulness of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平稳过渡自回归模型单位根的贝叶斯推断及其在经合组织国家的应用
摘要本文提出了一种检验非线性指数平稳过渡自回归过程的非平稳随机游动的贝叶斯单位根检验。它研究了贝叶斯估计量和贝叶斯单位根检验的性能,因为它在估计和幂性质方面比现有文献中报道的优越。本文将所提出的方法应用于经济合作与发展组织(OECD)选定的10个国家的实际有效汇率,并观察到一些有趣的发现,这些发现证明了该模型的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1