{"title":"Características oceanográficas de la surgencia frente a la Ensenada de Gaira, Departamento de Magdalena, época seca menor de 2006","authors":"Damián Leonardo Arévalo Martínez, A. Herrera","doi":"10.25268/BIMC.INVEMAR.2008.37.2.195","DOIUrl":null,"url":null,"abstract":"In order to determine the influence of the ocean and atmospheric coupling dynamics on upwelling events, caused by Ekman's transport and by continental winds, as well as the possible fertilization effect produced by the increasing of the concentration of inorganic nutrients in coastal waters of Gaira's inlet, Magdalena department, during the minor dry season of 2006, atmospheric, oceanographic, and biological variables were measured by the implementation of the Eurelian method. A total of four samplings were carried out, among which two presented atmospheric and oceanic conditions that evidence the occurrence of upwelling events 48 hours before in response to strong winds coming from northeast (trade winds) and from the continent, whereas the other two samplings presented similar characteristics to those typical of rainy seasons. During this study, wind velocity and direction presented expected values during upwelling events caused by Ekman's transport and by continental winds (> 4.5 m/s, 26 ° y 120 °, respectively), generating enough stress levels in the sea surface layer that could move it offshore (1.2 dynes/cm2). During the days following the upwelling events, anomalies in water physical and chemical characteristics were observed, presenting low temperatures (26.1 ± 1.1 °C ), high salinity (36.0 ± 0.5) and, as a consequence, high densities (at 26.31 ± 0.50), as well as low dissolved oxygen levels (4.04 ± 0.29 mL/L) and predominant subsaturation (84.3 ± 6.1 %). Inorganic nutrient concentration showed a relatively homogeneous behavior, keeping low nitrite (0.35 ± 0.02 μM) and phosphate (0.30 ± 0.01 μM) levels during all samplings, whereas the mean ammonium concentration was relatively high (1.08 ± 0.11 μM). In contrast, nitrate levels were high during all samplings, with higher values corresponding to upwelling events (9.48 ± 0.49 μM), although variation was not statistically significative. Phytoplanktonic biomass showed a moderate response to fertilization with chlorophyll a concentrations close to 0.54 ± 0.50 mg/m3, which are lower to the obtained in samplings executed after continental luvial inluence. Nevertheless, such behavior is more evident examining chlorophyll a-phaeopigment a quotient, in which values are predominantly higher than 1, indicating the presence of young and photosynthetically active communities in upwelled waters after 48 h. In general, atmospheric, oceanographic, and phytoplanktonic biomass information suggests a moderate increase in the fertilization of Gaira's inlet coastal waters, caused by the deep waters upwelling, which belong to the Submerged Subtropical Water (SSW), allowing to classify this local upwelling event as mesotrophic instead of oligotrophic, as traditionally accepted.","PeriodicalId":35743,"journal":{"name":"Boletin de Investigaciones Marinas y Costeras","volume":"37 1","pages":"131-162"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de Investigaciones Marinas y Costeras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25268/BIMC.INVEMAR.2008.37.2.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 15
Abstract
In order to determine the influence of the ocean and atmospheric coupling dynamics on upwelling events, caused by Ekman's transport and by continental winds, as well as the possible fertilization effect produced by the increasing of the concentration of inorganic nutrients in coastal waters of Gaira's inlet, Magdalena department, during the minor dry season of 2006, atmospheric, oceanographic, and biological variables were measured by the implementation of the Eurelian method. A total of four samplings were carried out, among which two presented atmospheric and oceanic conditions that evidence the occurrence of upwelling events 48 hours before in response to strong winds coming from northeast (trade winds) and from the continent, whereas the other two samplings presented similar characteristics to those typical of rainy seasons. During this study, wind velocity and direction presented expected values during upwelling events caused by Ekman's transport and by continental winds (> 4.5 m/s, 26 ° y 120 °, respectively), generating enough stress levels in the sea surface layer that could move it offshore (1.2 dynes/cm2). During the days following the upwelling events, anomalies in water physical and chemical characteristics were observed, presenting low temperatures (26.1 ± 1.1 °C ), high salinity (36.0 ± 0.5) and, as a consequence, high densities (at 26.31 ± 0.50), as well as low dissolved oxygen levels (4.04 ± 0.29 mL/L) and predominant subsaturation (84.3 ± 6.1 %). Inorganic nutrient concentration showed a relatively homogeneous behavior, keeping low nitrite (0.35 ± 0.02 μM) and phosphate (0.30 ± 0.01 μM) levels during all samplings, whereas the mean ammonium concentration was relatively high (1.08 ± 0.11 μM). In contrast, nitrate levels were high during all samplings, with higher values corresponding to upwelling events (9.48 ± 0.49 μM), although variation was not statistically significative. Phytoplanktonic biomass showed a moderate response to fertilization with chlorophyll a concentrations close to 0.54 ± 0.50 mg/m3, which are lower to the obtained in samplings executed after continental luvial inluence. Nevertheless, such behavior is more evident examining chlorophyll a-phaeopigment a quotient, in which values are predominantly higher than 1, indicating the presence of young and photosynthetically active communities in upwelled waters after 48 h. In general, atmospheric, oceanographic, and phytoplanktonic biomass information suggests a moderate increase in the fertilization of Gaira's inlet coastal waters, caused by the deep waters upwelling, which belong to the Submerged Subtropical Water (SSW), allowing to classify this local upwelling event as mesotrophic instead of oligotrophic, as traditionally accepted.