Moving Up the Cluster Tree with the Gradient Flow

IF 2.6 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2021-09-17 DOI:10.1137/22m1469869
E. Arias-Castro, Wanli Qiao
{"title":"Moving Up the Cluster Tree with the Gradient Flow","authors":"E. Arias-Castro, Wanli Qiao","doi":"10.1137/22m1469869","DOIUrl":null,"url":null,"abstract":"The paper establishes a strong correspondence between two important clustering approaches that emerged in the 1970's: clustering by level sets or cluster tree as proposed by Hartigan and clustering by gradient lines or gradient flow as proposed by Fukunaga and Hostetler. We do so by showing that we can move up the cluster tree by following the gradient ascent flow.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1469869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The paper establishes a strong correspondence between two important clustering approaches that emerged in the 1970's: clustering by level sets or cluster tree as proposed by Hartigan and clustering by gradient lines or gradient flow as proposed by Fukunaga and Hostetler. We do so by showing that we can move up the cluster tree by following the gradient ascent flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用梯度流向上移动集群树
本文建立了20世纪70年代出现的两种重要聚类方法之间的强烈对应关系:Hartigan提出的水平集或聚类树聚类和Fukunaga和Hostetler提出的梯度线或梯度流聚类。我们通过展示我们可以沿着梯度上升流向上移动聚类树来做到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supervised Gromov-Wasserstein Optimal Transport with Metric-Preserving Constraints. Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1