Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation.

IF 2.3 Frontiers in systems biology Pub Date : 2023-02-09 eCollection Date: 2023-01-01 DOI:10.3389/fsysb.2023.893366
Yunbei Pan, Maria R D'Orsogna, Min Tang, Thomas Stiehl, Tom Chou
{"title":"Clonal abundance patterns in hematopoiesis: Mathematical modeling and parameter estimation.","authors":"Yunbei Pan, Maria R D'Orsogna, Min Tang, Thomas Stiehl, Tom Chou","doi":"10.3389/fsysb.2023.893366","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoiesis has been studied <i>via</i> stem cell labeling using barcodes, viral integration sites (VISs), or <i>in situ</i> methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. (Koelle et al., 2017) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.</p>","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":" ","pages":"893366"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2023.893366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hematopoiesis has been studied via stem cell labeling using barcodes, viral integration sites (VISs), or in situ methods. Subsequent proliferation and differentiation preserve the tag identity, thus defining a clone of mature cells across multiple cell type or lineages. By tracking the population of clones, measured within samples taken at discrete time points, we infer physiological parameters associated with a hybrid stochastic-deterministic mathematical model of hematopoiesis. We analyze clone population data from Koelle et al. (Koelle et al., 2017) and compare the states of clones (mean and variance of their abundances) and the state-space density of clones with the corresponding quantities predicted from our model. Comparing our model to the tagged granulocyte populations, we find parameters (stem cell carrying capacity, stem cell differentiation rates, and the proliferative potential of progenitor cells, and sample sizes) that provide reasonable fits in three out of four animals. Even though some observed features cannot be quantitatively reproduced by our model, our analyses provides insight into how model parameters influence the underlying mechanisms in hematopoiesis. We discuss additional mechanisms not incorporated in our model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
造血中的克隆丰度模式:数学建模和参数估计
造血已经通过使用条形码、病毒整合位点(vis)或原位方法的干细胞标记进行了研究。随后的增殖和分化保留了标签的身份,从而定义了跨多种细胞类型或谱系的成熟细胞克隆。通过跟踪在离散时间点采集的样本中测量的克隆种群,我们推断出与造血的混合随机-确定性数学模型相关的生理参数。我们分析了Koelle等人的克隆种群数据(Koelle等人,2017),并将克隆的状态(其丰度的均值和方差)和克隆的状态空间密度与我们模型预测的相应数量进行了比较。将我们的模型与标记的粒细胞群体进行比较,我们发现参数(干细胞携带能力、干细胞分化率、祖细胞的增殖潜力和样本量)在四分之三的动物中提供了合理的拟合。尽管我们的模型不能定量再现一些观察到的特征,但我们的分析为模型参数如何影响造血的潜在机制提供了见解。我们讨论了模型中未包含的其他机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural networks and foundation models: two strategies for EEG-to-fMRI prediction. BioMedKG: multimodal contrastive representation learning in augmented BioMedical knowledge graphs. Towards effective cystic fibrosis gene therapy by optimizing prime editing and pulmonary-targeted LNPs. The role of neutrophil-to-lymphocyte ratio in the prognosis of chronic kidney disease: insights from the NHANES cohort study. Correction: MicrobiomeKG: bridging microbiome research and host health through knowledge graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1