E-Bayesian Estimation for Burr-X Distribution Based on Generalized Type-I Hybrid Censoring Scheme

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-01-02 DOI:10.1080/01966324.2019.1579123
A. Rabie, Junping Li
{"title":"E-Bayesian Estimation for Burr-X Distribution Based on Generalized Type-I Hybrid Censoring Scheme","authors":"A. Rabie, Junping Li","doi":"10.1080/01966324.2019.1579123","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT This article deals with Bayesian and E-Bayesian (expectation of the Bayesian estimate) estimation methods of the parameter and the reliability function of Burr-X distribution based on a generalized Type-I hybrid censoring scheme. Bayesian and E-Bayesian estimates are obtained under LINEX and squared error loss functions. By applying Markov chain Monte Carlo techniques, Bayesian and E-Bayesian estimates based on a generalized Type-I hybrid censoring scheme are derived. Also, credible intervals for Bayesian and E-Bayesian estimates are computed. Examples of generalized Type-I hybrid censored samples and real data sets are presented for the purpose of illustration. Finally, a comparison between Bayesian and E-Bayesian estimation methods is conducted.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"41 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1579123","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1579123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 18

Abstract

SYNOPTIC ABSTRACT This article deals with Bayesian and E-Bayesian (expectation of the Bayesian estimate) estimation methods of the parameter and the reliability function of Burr-X distribution based on a generalized Type-I hybrid censoring scheme. Bayesian and E-Bayesian estimates are obtained under LINEX and squared error loss functions. By applying Markov chain Monte Carlo techniques, Bayesian and E-Bayesian estimates based on a generalized Type-I hybrid censoring scheme are derived. Also, credible intervals for Bayesian and E-Bayesian estimates are computed. Examples of generalized Type-I hybrid censored samples and real data sets are presented for the purpose of illustration. Finally, a comparison between Bayesian and E-Bayesian estimation methods is conducted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于广义I型混合Censoring方案的Burr-X分布的E-Bayesian估计
本文讨论了基于广义i型混合滤波方案的Burr-X分布参数和可靠性函数的贝叶斯和e-贝叶斯(贝叶斯估计期望)估计方法。在LINEX和平方误差损失函数下得到贝叶斯估计和e -贝叶斯估计。利用马尔可夫链蒙特卡罗技术,导出了基于广义i型混合滤波方案的贝叶斯估计和e-贝叶斯估计。同时,计算了贝叶斯估计和e -贝叶斯估计的可信区间。为了说明问题,给出了广义i型混合截尾样本和实际数据集的例子。最后,对贝叶斯估计方法和e -贝叶斯估计方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1