{"title":"E-Bayesian Estimation for Burr-X Distribution Based on Generalized Type-I Hybrid Censoring Scheme","authors":"A. Rabie, Junping Li","doi":"10.1080/01966324.2019.1579123","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT This article deals with Bayesian and E-Bayesian (expectation of the Bayesian estimate) estimation methods of the parameter and the reliability function of Burr-X distribution based on a generalized Type-I hybrid censoring scheme. Bayesian and E-Bayesian estimates are obtained under LINEX and squared error loss functions. By applying Markov chain Monte Carlo techniques, Bayesian and E-Bayesian estimates based on a generalized Type-I hybrid censoring scheme are derived. Also, credible intervals for Bayesian and E-Bayesian estimates are computed. Examples of generalized Type-I hybrid censored samples and real data sets are presented for the purpose of illustration. Finally, a comparison between Bayesian and E-Bayesian estimation methods is conducted.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"41 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1579123","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1579123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 18
Abstract
SYNOPTIC ABSTRACT This article deals with Bayesian and E-Bayesian (expectation of the Bayesian estimate) estimation methods of the parameter and the reliability function of Burr-X distribution based on a generalized Type-I hybrid censoring scheme. Bayesian and E-Bayesian estimates are obtained under LINEX and squared error loss functions. By applying Markov chain Monte Carlo techniques, Bayesian and E-Bayesian estimates based on a generalized Type-I hybrid censoring scheme are derived. Also, credible intervals for Bayesian and E-Bayesian estimates are computed. Examples of generalized Type-I hybrid censored samples and real data sets are presented for the purpose of illustration. Finally, a comparison between Bayesian and E-Bayesian estimation methods is conducted.