{"title":"Experimental study on dynamic biaxial tension-compression properties of hydraulic concrete","authors":"Hai-tao Wang, Haoyu Sun, Jiayu Shen, W. Fan","doi":"10.1080/14488353.2020.1813924","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most hydraulic concrete structures are in complex stress state. In order to study the effect of dynamic action on properties of hydraulic concrete under biaxial tension-compression, hydraulic concrete specimens were subjected to dynamic biaxial tension-compression tests were conducted at 6 different tension-compression ratios of 0 (uniaxial compression), 0.05:-1, 0.1:-1, 0.25:-1, 0.5:-1, ∞ (uniaxial tension) as well as 4 different strain rates of 10−5/s, 10−4/s, 10−3/s and 10−2/s. The failure mode, ultimate strength, peak strain and stress-strain curve under different tension-compression ratios and strain rates were measured. According to test data, the ultimate strength, as well as deformation properties, was analysed in terms of tension-compression ratio and strain rate. The failure criterions of hydraulic concrete under dynamic biaxial tension-compression stress state were established in principal stress space and octahedral stress space, respectively, providing experimental and theoretical reference for the design and maintenance of hydraulic structures. The results of the research on the ultimate strength and failure criterion of ordinary concrete, wet sieve concrete and air-entrained concrete under biaxial stress state were compared with the experimental results of this paper, proving the feasibility of the failure criterion proposed in this paper.","PeriodicalId":44354,"journal":{"name":"Australian Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14488353.2020.1813924","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14488353.2020.1813924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Most hydraulic concrete structures are in complex stress state. In order to study the effect of dynamic action on properties of hydraulic concrete under biaxial tension-compression, hydraulic concrete specimens were subjected to dynamic biaxial tension-compression tests were conducted at 6 different tension-compression ratios of 0 (uniaxial compression), 0.05:-1, 0.1:-1, 0.25:-1, 0.5:-1, ∞ (uniaxial tension) as well as 4 different strain rates of 10−5/s, 10−4/s, 10−3/s and 10−2/s. The failure mode, ultimate strength, peak strain and stress-strain curve under different tension-compression ratios and strain rates were measured. According to test data, the ultimate strength, as well as deformation properties, was analysed in terms of tension-compression ratio and strain rate. The failure criterions of hydraulic concrete under dynamic biaxial tension-compression stress state were established in principal stress space and octahedral stress space, respectively, providing experimental and theoretical reference for the design and maintenance of hydraulic structures. The results of the research on the ultimate strength and failure criterion of ordinary concrete, wet sieve concrete and air-entrained concrete under biaxial stress state were compared with the experimental results of this paper, proving the feasibility of the failure criterion proposed in this paper.