How to assess climate change impact models: uncertainty analysis of streamflow statistics via approximate Bayesian computation (ABC)

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES Hydrological Sciences Journal-Journal Des Sciences Hydrologiques Pub Date : 2023-06-29 DOI:10.1080/02626667.2023.2231437
J. Romero-Cuellar, F. Francés
{"title":"How to assess climate change impact models: uncertainty analysis of streamflow statistics via approximate Bayesian computation (ABC)","authors":"J. Romero-Cuellar, F. Francés","doi":"10.1080/02626667.2023.2231437","DOIUrl":null,"url":null,"abstract":"ABSTRACT Climate change impact models (CCIMs) suffer from inherent bias, uncertainty, and asynchronous observations in the baseline period. To overcome these challenges, this study introduces a methodology to assess CCIMs in the baseline period using the uncertainty analysis of streamflow statistics via the approximate Bayesian computation (ABC) post-processor, which infers the residual error model parameters based on summary statistics (signatures). As an illustrative case study, we analyzed the climate change projections of the fifth assessment report of the United Nations intergovernmental panel on climate change (AR5 - IPCC) of the monthly streamflow in the upper Oria catchment (Spain) with deterministic and probabilistic verification frameworks to assess the ABC post-processor outputs. In addition, the ABC post-processor is evaluated against the ensemble (reference method). The results show that the ABC post-processor outperformed the ensemble method in all verification metrics, and the ensemble method has reasonable reliability but exhibited poor sharpness. We suggest that the ensemble method should be complemented with the ABC post-processor for climate change impact studies.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2231437","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Climate change impact models (CCIMs) suffer from inherent bias, uncertainty, and asynchronous observations in the baseline period. To overcome these challenges, this study introduces a methodology to assess CCIMs in the baseline period using the uncertainty analysis of streamflow statistics via the approximate Bayesian computation (ABC) post-processor, which infers the residual error model parameters based on summary statistics (signatures). As an illustrative case study, we analyzed the climate change projections of the fifth assessment report of the United Nations intergovernmental panel on climate change (AR5 - IPCC) of the monthly streamflow in the upper Oria catchment (Spain) with deterministic and probabilistic verification frameworks to assess the ABC post-processor outputs. In addition, the ABC post-processor is evaluated against the ensemble (reference method). The results show that the ABC post-processor outperformed the ensemble method in all verification metrics, and the ensemble method has reasonable reliability but exhibited poor sharpness. We suggest that the ensemble method should be complemented with the ABC post-processor for climate change impact studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何评估气候变化影响模式:基于近似贝叶斯计算(ABC)的流量统计不确定性分析
气候变化影响模式(CCIMs)在基线期存在固有的偏差、不确定性和非同步观测。为了克服这些挑战,本研究引入了一种基于汇总统计(签名)推断残差模型参数的方法,通过近似贝叶斯计算(ABC)后处理器对流量统计数据进行不确定性分析,来评估基线期的CCIMs。以联合国政府间气候变化专门委员会第五次评估报告(AR5 - IPCC)为例,利用确定性和概率验证框架对西班牙奥里亚上游流域月流量的气候变化预测进行了分析,以评估ABC后处理器输出。此外,ABC后处理器根据集成(参考方法)进行评估。结果表明,ABC后处理器在所有验证指标上都优于集成方法,集成方法具有合理的可靠性,但清晰度较差。我们建议,在气候变化影响研究中,集合方法应与ABC后处理器相辅相成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
期刊最新文献
Potential assessment of calibration approaches using the SWAT hydrological model for streamflow and sediment yield for a large-scale catchment Explaining the groundwater salinity of hard-rock aquifers in semi-arid hinterlands using a multidisciplinary approach An assessment of small island hydrological research activity conducted in the Oceania region Spatiotemporal river–aquifer interactions of a large tropical dryland river with high anthropic intervention A priori selection of hydrological model structures in modular modelling frameworks: application to Great Britain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1